feat: complete redesign to v2.4.0 - Claude's ultimate development partner
Major redesign of Gemini MCP Server with modular architecture: - Removed all emoji characters from tool outputs for clean terminal display - Kept review category emojis (🔴🟠🟡🟢) per user preference - Added 4 specialized tools: - think_deeper: Extended reasoning and problem-solving (temp 0.7) - review_code: Professional code review with severity levels (temp 0.2) - debug_issue: Root cause analysis and debugging (temp 0.2) - analyze: General-purpose file analysis (temp 0.2) - Modular architecture with base tool class and Pydantic models - Verbose tool descriptions with natural language triggers - Updated README with comprehensive examples and real-world use cases - All 25 tests passing, type checking clean, critical linting clean BREAKING CHANGE: Removed analyze_code tool in favor of specialized tools 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
15
tools/__init__.py
Normal file
15
tools/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
"""
|
||||
Tool implementations for Gemini MCP Server
|
||||
"""
|
||||
|
||||
from .think_deeper import ThinkDeeperTool
|
||||
from .review_code import ReviewCodeTool
|
||||
from .debug_issue import DebugIssueTool
|
||||
from .analyze import AnalyzeTool
|
||||
|
||||
__all__ = [
|
||||
"ThinkDeeperTool",
|
||||
"ReviewCodeTool",
|
||||
"DebugIssueTool",
|
||||
"AnalyzeTool",
|
||||
]
|
||||
151
tools/analyze.py
Normal file
151
tools/analyze.py
Normal file
@@ -0,0 +1,151 @@
|
||||
"""
|
||||
Analyze tool - General-purpose code and file analysis
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List, Optional
|
||||
from pydantic import Field
|
||||
from .base import BaseTool, ToolRequest
|
||||
from prompts import ANALYZE_PROMPT
|
||||
from utils import read_files, check_token_limit
|
||||
from config import TEMPERATURE_ANALYTICAL, MAX_CONTEXT_TOKENS
|
||||
|
||||
|
||||
class AnalyzeRequest(ToolRequest):
|
||||
"""Request model for analyze tool"""
|
||||
|
||||
files: List[str] = Field(..., description="Files to analyze")
|
||||
question: str = Field(..., description="What to analyze or look for")
|
||||
analysis_type: Optional[str] = Field(
|
||||
None,
|
||||
description="Type of analysis: architecture|performance|security|quality|general",
|
||||
)
|
||||
output_format: Optional[str] = Field(
|
||||
"detailed", description="Output format: summary|detailed|actionable"
|
||||
)
|
||||
|
||||
|
||||
class AnalyzeTool(BaseTool):
|
||||
"""General-purpose file and code analysis tool"""
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "analyze"
|
||||
|
||||
def get_description(self) -> str:
|
||||
return (
|
||||
"ANALYZE FILES & CODE - General-purpose analysis for understanding code. "
|
||||
"Use this for examining files, understanding architecture, or investigating specific aspects. "
|
||||
"Triggers: 'analyze these files', 'examine this code', 'understand this'. "
|
||||
"Perfect for: codebase exploration, dependency analysis, pattern detection. "
|
||||
"Always uses file paths for clean terminal output."
|
||||
)
|
||||
|
||||
def get_input_schema(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Files to analyze",
|
||||
},
|
||||
"question": {
|
||||
"type": "string",
|
||||
"description": "What to analyze or look for",
|
||||
},
|
||||
"analysis_type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"architecture",
|
||||
"performance",
|
||||
"security",
|
||||
"quality",
|
||||
"general",
|
||||
],
|
||||
"description": "Type of analysis to perform",
|
||||
},
|
||||
"output_format": {
|
||||
"type": "string",
|
||||
"enum": ["summary", "detailed", "actionable"],
|
||||
"default": "detailed",
|
||||
"description": "How to format the output",
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"description": "Temperature (0-1, default 0.2)",
|
||||
"minimum": 0,
|
||||
"maximum": 1,
|
||||
},
|
||||
},
|
||||
"required": ["files", "question"],
|
||||
}
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return ANALYZE_PROMPT
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_ANALYTICAL
|
||||
|
||||
def get_request_model(self):
|
||||
return AnalyzeRequest
|
||||
|
||||
async def prepare_prompt(self, request: AnalyzeRequest) -> str:
|
||||
"""Prepare the analysis prompt"""
|
||||
# Read all files
|
||||
file_content, summary = read_files(request.files)
|
||||
|
||||
# Check token limits
|
||||
within_limit, estimated_tokens = check_token_limit(file_content)
|
||||
if not within_limit:
|
||||
raise ValueError(
|
||||
f"Files too large (~{estimated_tokens:,} tokens). "
|
||||
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
||||
)
|
||||
|
||||
# Build analysis instructions
|
||||
analysis_focus = []
|
||||
|
||||
if request.analysis_type:
|
||||
type_focus = {
|
||||
"architecture": "Focus on architectural patterns, structure, and design decisions",
|
||||
"performance": "Focus on performance characteristics and optimization opportunities",
|
||||
"security": "Focus on security implications and potential vulnerabilities",
|
||||
"quality": "Focus on code quality, maintainability, and best practices",
|
||||
"general": "Provide a comprehensive general analysis",
|
||||
}
|
||||
analysis_focus.append(type_focus.get(request.analysis_type, ""))
|
||||
|
||||
if request.output_format == "summary":
|
||||
analysis_focus.append("Provide a concise summary of key findings")
|
||||
elif request.output_format == "actionable":
|
||||
analysis_focus.append(
|
||||
"Focus on actionable insights and specific recommendations"
|
||||
)
|
||||
|
||||
focus_instruction = "\n".join(analysis_focus) if analysis_focus else ""
|
||||
|
||||
# Combine everything
|
||||
full_prompt = f"""{self.get_system_prompt()}
|
||||
|
||||
{focus_instruction}
|
||||
|
||||
=== USER QUESTION ===
|
||||
{request.question}
|
||||
=== END QUESTION ===
|
||||
|
||||
=== FILES TO ANALYZE ===
|
||||
{file_content}
|
||||
=== END FILES ===
|
||||
|
||||
Please analyze these files to answer the user's question."""
|
||||
|
||||
return full_prompt
|
||||
|
||||
def format_response(self, response: str, request: AnalyzeRequest) -> str:
|
||||
"""Format the analysis response"""
|
||||
header = f"Analysis: {request.question[:50]}..."
|
||||
if request.analysis_type:
|
||||
header = f"{request.analysis_type.upper()} Analysis"
|
||||
|
||||
summary_text = f"Analyzed {len(request.files)} file(s)"
|
||||
|
||||
return f"{header}\n{summary_text}\n{'=' * 50}\n\n{response}"
|
||||
128
tools/base.py
Normal file
128
tools/base.py
Normal file
@@ -0,0 +1,128 @@
|
||||
"""
|
||||
Base class for all Gemini MCP tools
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Any, List, Optional
|
||||
from pydantic import BaseModel, Field
|
||||
import google.generativeai as genai
|
||||
from mcp.types import TextContent
|
||||
|
||||
|
||||
class ToolRequest(BaseModel):
|
||||
"""Base request model for all tools"""
|
||||
|
||||
model: Optional[str] = Field(
|
||||
None, description="Model to use (defaults to Gemini 2.5 Pro)"
|
||||
)
|
||||
max_tokens: Optional[int] = Field(
|
||||
8192, description="Maximum number of tokens in response"
|
||||
)
|
||||
temperature: Optional[float] = Field(
|
||||
None, description="Temperature for response (tool-specific defaults)"
|
||||
)
|
||||
|
||||
|
||||
class BaseTool(ABC):
|
||||
"""Base class for all Gemini tools"""
|
||||
|
||||
def __init__(self):
|
||||
self.name = self.get_name()
|
||||
self.description = self.get_description()
|
||||
self.default_temperature = self.get_default_temperature()
|
||||
|
||||
@abstractmethod
|
||||
def get_name(self) -> str:
|
||||
"""Return the tool name"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_description(self) -> str:
|
||||
"""Return the verbose tool description for Claude"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_input_schema(self) -> Dict[str, Any]:
|
||||
"""Return the JSON schema for tool inputs"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_system_prompt(self) -> str:
|
||||
"""Return the system prompt for this tool"""
|
||||
pass
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
"""Return default temperature for this tool"""
|
||||
return 0.5
|
||||
|
||||
@abstractmethod
|
||||
def get_request_model(self):
|
||||
"""Return the Pydantic model for request validation"""
|
||||
pass
|
||||
|
||||
async def execute(self, arguments: Dict[str, Any]) -> List[TextContent]:
|
||||
"""Execute the tool with given arguments"""
|
||||
try:
|
||||
# Validate request
|
||||
request_model = self.get_request_model()
|
||||
request = request_model(**arguments)
|
||||
|
||||
# Prepare the prompt
|
||||
prompt = await self.prepare_prompt(request)
|
||||
|
||||
# Get model configuration
|
||||
from config import DEFAULT_MODEL
|
||||
|
||||
model_name = getattr(request, "model", None) or DEFAULT_MODEL
|
||||
temperature = getattr(request, "temperature", None)
|
||||
if temperature is None:
|
||||
temperature = self.get_default_temperature()
|
||||
max_tokens = getattr(request, "max_tokens", 8192)
|
||||
|
||||
# Create and configure model
|
||||
model = self.create_model(model_name, temperature, max_tokens)
|
||||
|
||||
# Generate response
|
||||
response = model.generate_content(prompt)
|
||||
|
||||
# Handle response
|
||||
if response.candidates and response.candidates[0].content.parts:
|
||||
text = response.candidates[0].content.parts[0].text
|
||||
else:
|
||||
finish_reason = (
|
||||
response.candidates[0].finish_reason
|
||||
if response.candidates
|
||||
else "Unknown"
|
||||
)
|
||||
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
|
||||
|
||||
# Format response
|
||||
formatted_response = self.format_response(text, request)
|
||||
|
||||
return [TextContent(type="text", text=formatted_response)]
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error in {self.name}: {str(e)}"
|
||||
return [TextContent(type="text", text=error_msg)]
|
||||
|
||||
@abstractmethod
|
||||
async def prepare_prompt(self, request) -> str:
|
||||
"""Prepare the full prompt for Gemini"""
|
||||
pass
|
||||
|
||||
def format_response(self, response: str, request) -> str:
|
||||
"""Format the response for display (can be overridden)"""
|
||||
return response
|
||||
|
||||
def create_model(
|
||||
self, model_name: str, temperature: float, max_tokens: int
|
||||
) -> genai.GenerativeModel:
|
||||
"""Create a configured Gemini model"""
|
||||
return genai.GenerativeModel(
|
||||
model_name=model_name,
|
||||
generation_config={
|
||||
"temperature": temperature,
|
||||
"max_output_tokens": max_tokens,
|
||||
"candidate_count": 1,
|
||||
},
|
||||
)
|
||||
145
tools/debug_issue.py
Normal file
145
tools/debug_issue.py
Normal file
@@ -0,0 +1,145 @@
|
||||
"""
|
||||
Debug Issue tool - Root cause analysis and debugging assistance
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List, Optional
|
||||
from pydantic import Field
|
||||
from .base import BaseTool, ToolRequest
|
||||
from prompts import DEBUG_ISSUE_PROMPT
|
||||
from utils import read_files, check_token_limit
|
||||
from config import TEMPERATURE_ANALYTICAL, MAX_CONTEXT_TOKENS
|
||||
|
||||
|
||||
class DebugIssueRequest(ToolRequest):
|
||||
"""Request model for debug_issue tool"""
|
||||
|
||||
error_description: str = Field(
|
||||
..., description="Error message, symptoms, or issue description"
|
||||
)
|
||||
error_context: Optional[str] = Field(
|
||||
None, description="Stack trace, logs, or additional error context"
|
||||
)
|
||||
relevant_files: Optional[List[str]] = Field(
|
||||
None, description="Files that might be related to the issue"
|
||||
)
|
||||
runtime_info: Optional[str] = Field(
|
||||
None, description="Environment, versions, or runtime information"
|
||||
)
|
||||
previous_attempts: Optional[str] = Field(
|
||||
None, description="What has been tried already"
|
||||
)
|
||||
|
||||
|
||||
class DebugIssueTool(BaseTool):
|
||||
"""Advanced debugging and root cause analysis tool"""
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "debug_issue"
|
||||
|
||||
def get_description(self) -> str:
|
||||
return (
|
||||
"DEBUG & ROOT CAUSE ANALYSIS - Expert debugging for complex issues. "
|
||||
"Use this when you need help tracking down bugs or understanding errors. "
|
||||
"Triggers: 'debug this', 'why is this failing', 'root cause', 'trace error'. "
|
||||
"I'll analyze the issue, find root causes, and provide step-by-step solutions. "
|
||||
"Include error messages, stack traces, and relevant code for best results."
|
||||
)
|
||||
|
||||
def get_input_schema(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"error_description": {
|
||||
"type": "string",
|
||||
"description": "Error message, symptoms, or issue description",
|
||||
},
|
||||
"error_context": {
|
||||
"type": "string",
|
||||
"description": "Stack trace, logs, or additional error context",
|
||||
},
|
||||
"relevant_files": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Files that might be related to the issue",
|
||||
},
|
||||
"runtime_info": {
|
||||
"type": "string",
|
||||
"description": "Environment, versions, or runtime information",
|
||||
},
|
||||
"previous_attempts": {
|
||||
"type": "string",
|
||||
"description": "What has been tried already",
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"description": "Temperature (0-1, default 0.2 for accuracy)",
|
||||
"minimum": 0,
|
||||
"maximum": 1,
|
||||
},
|
||||
},
|
||||
"required": ["error_description"],
|
||||
}
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return DEBUG_ISSUE_PROMPT
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_ANALYTICAL
|
||||
|
||||
def get_request_model(self):
|
||||
return DebugIssueRequest
|
||||
|
||||
async def prepare_prompt(self, request: DebugIssueRequest) -> str:
|
||||
"""Prepare the debugging prompt"""
|
||||
# Build context sections
|
||||
context_parts = [
|
||||
f"=== ISSUE DESCRIPTION ===\n{request.error_description}\n=== END DESCRIPTION ==="
|
||||
]
|
||||
|
||||
if request.error_context:
|
||||
context_parts.append(
|
||||
f"\n=== ERROR CONTEXT/STACK TRACE ===\n{request.error_context}\n=== END CONTEXT ==="
|
||||
)
|
||||
|
||||
if request.runtime_info:
|
||||
context_parts.append(
|
||||
f"\n=== RUNTIME INFORMATION ===\n{request.runtime_info}\n=== END RUNTIME ==="
|
||||
)
|
||||
|
||||
if request.previous_attempts:
|
||||
context_parts.append(
|
||||
f"\n=== PREVIOUS ATTEMPTS ===\n{request.previous_attempts}\n=== END ATTEMPTS ==="
|
||||
)
|
||||
|
||||
# Add relevant files if provided
|
||||
if request.relevant_files:
|
||||
file_content, _ = read_files(request.relevant_files)
|
||||
context_parts.append(
|
||||
f"\n=== RELEVANT CODE ===\n{file_content}\n=== END CODE ==="
|
||||
)
|
||||
|
||||
full_context = "\n".join(context_parts)
|
||||
|
||||
# Check token limits
|
||||
within_limit, estimated_tokens = check_token_limit(full_context)
|
||||
if not within_limit:
|
||||
raise ValueError(
|
||||
f"Context too large (~{estimated_tokens:,} tokens). "
|
||||
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
||||
)
|
||||
|
||||
# Combine everything
|
||||
full_prompt = f"""{self.get_system_prompt()}
|
||||
|
||||
{full_context}
|
||||
|
||||
Please debug this issue following the structured format in the system prompt.
|
||||
Focus on finding the root cause and providing actionable solutions."""
|
||||
|
||||
return full_prompt
|
||||
|
||||
def format_response(
|
||||
self, response: str, request: DebugIssueRequest
|
||||
) -> str:
|
||||
"""Format the debugging response"""
|
||||
return f"Debug Analysis\n{'=' * 50}\n\n{response}"
|
||||
160
tools/review_code.py
Normal file
160
tools/review_code.py
Normal file
@@ -0,0 +1,160 @@
|
||||
"""
|
||||
Code Review tool - Comprehensive code analysis and review
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List, Optional
|
||||
from pydantic import Field
|
||||
from .base import BaseTool, ToolRequest
|
||||
from prompts import REVIEW_CODE_PROMPT
|
||||
from utils import read_files, check_token_limit
|
||||
from config import TEMPERATURE_ANALYTICAL, MAX_CONTEXT_TOKENS
|
||||
|
||||
|
||||
class ReviewCodeRequest(ToolRequest):
|
||||
"""Request model for review_code tool"""
|
||||
|
||||
files: List[str] = Field(..., description="Code files to review")
|
||||
review_type: str = Field(
|
||||
"full", description="Type of review: full|security|performance|quick"
|
||||
)
|
||||
focus_on: Optional[str] = Field(
|
||||
None, description="Specific aspects to focus on during review"
|
||||
)
|
||||
standards: Optional[str] = Field(
|
||||
None, description="Coding standards or guidelines to enforce"
|
||||
)
|
||||
severity_filter: str = Field(
|
||||
"all",
|
||||
description="Minimum severity to report: critical|high|medium|all",
|
||||
)
|
||||
|
||||
|
||||
class ReviewCodeTool(BaseTool):
|
||||
"""Professional code review tool"""
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "review_code"
|
||||
|
||||
def get_description(self) -> str:
|
||||
return (
|
||||
"PROFESSIONAL CODE REVIEW - Comprehensive analysis for bugs, security, and quality. "
|
||||
"Use this for thorough code review with actionable feedback. "
|
||||
"Triggers: 'review this code', 'check for issues', 'find bugs', 'security audit'. "
|
||||
"I'll identify issues by severity (Critical→High→Medium→Low) with specific fixes. "
|
||||
"Supports focused reviews: security, performance, or quick checks."
|
||||
)
|
||||
|
||||
def get_input_schema(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"files": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Code files to review",
|
||||
},
|
||||
"review_type": {
|
||||
"type": "string",
|
||||
"enum": ["full", "security", "performance", "quick"],
|
||||
"default": "full",
|
||||
"description": "Type of review to perform",
|
||||
},
|
||||
"focus_on": {
|
||||
"type": "string",
|
||||
"description": "Specific aspects to focus on",
|
||||
},
|
||||
"standards": {
|
||||
"type": "string",
|
||||
"description": "Coding standards to enforce",
|
||||
},
|
||||
"severity_filter": {
|
||||
"type": "string",
|
||||
"enum": ["critical", "high", "medium", "all"],
|
||||
"default": "all",
|
||||
"description": "Minimum severity level to report",
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"description": "Temperature (0-1, default 0.2 for consistency)",
|
||||
"minimum": 0,
|
||||
"maximum": 1,
|
||||
},
|
||||
},
|
||||
"required": ["files"],
|
||||
}
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return REVIEW_CODE_PROMPT
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_ANALYTICAL
|
||||
|
||||
def get_request_model(self):
|
||||
return ReviewCodeRequest
|
||||
|
||||
async def prepare_prompt(self, request: ReviewCodeRequest) -> str:
|
||||
"""Prepare the code review prompt"""
|
||||
# Read all files
|
||||
file_content, summary = read_files(request.files)
|
||||
|
||||
# Check token limits
|
||||
within_limit, estimated_tokens = check_token_limit(file_content)
|
||||
if not within_limit:
|
||||
raise ValueError(
|
||||
f"Code too large (~{estimated_tokens:,} tokens). "
|
||||
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
||||
)
|
||||
|
||||
# Build review instructions
|
||||
review_focus = []
|
||||
if request.review_type == "security":
|
||||
review_focus.append(
|
||||
"Focus on security vulnerabilities and authentication issues"
|
||||
)
|
||||
elif request.review_type == "performance":
|
||||
review_focus.append(
|
||||
"Focus on performance bottlenecks and optimization opportunities"
|
||||
)
|
||||
elif request.review_type == "quick":
|
||||
review_focus.append(
|
||||
"Provide a quick review focusing on critical issues only"
|
||||
)
|
||||
|
||||
if request.focus_on:
|
||||
review_focus.append(
|
||||
f"Pay special attention to: {request.focus_on}"
|
||||
)
|
||||
|
||||
if request.standards:
|
||||
review_focus.append(
|
||||
f"Enforce these standards: {request.standards}"
|
||||
)
|
||||
|
||||
if request.severity_filter != "all":
|
||||
review_focus.append(
|
||||
f"Only report issues of {request.severity_filter} severity or higher"
|
||||
)
|
||||
|
||||
focus_instruction = "\n".join(review_focus) if review_focus else ""
|
||||
|
||||
# Combine everything
|
||||
full_prompt = f"""{self.get_system_prompt()}
|
||||
|
||||
{focus_instruction}
|
||||
|
||||
=== CODE TO REVIEW ===
|
||||
{file_content}
|
||||
=== END CODE ===
|
||||
|
||||
Please provide a comprehensive code review following the format specified in the system prompt."""
|
||||
|
||||
return full_prompt
|
||||
|
||||
def format_response(
|
||||
self, response: str, request: ReviewCodeRequest
|
||||
) -> str:
|
||||
"""Format the review response"""
|
||||
header = f"Code Review ({request.review_type.upper()})"
|
||||
if request.focus_on:
|
||||
header += f" - Focus: {request.focus_on}"
|
||||
return f"{header}\n{'=' * 50}\n\n{response}"
|
||||
145
tools/think_deeper.py
Normal file
145
tools/think_deeper.py
Normal file
@@ -0,0 +1,145 @@
|
||||
"""
|
||||
Think Deeper tool - Extended reasoning and problem-solving
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List, Optional
|
||||
from pydantic import Field
|
||||
from .base import BaseTool, ToolRequest
|
||||
from prompts import THINK_DEEPER_PROMPT
|
||||
from utils import read_files, check_token_limit
|
||||
from config import TEMPERATURE_CREATIVE, MAX_CONTEXT_TOKENS
|
||||
|
||||
|
||||
class ThinkDeeperRequest(ToolRequest):
|
||||
"""Request model for think_deeper tool"""
|
||||
|
||||
current_analysis: str = Field(
|
||||
..., description="Claude's current thinking/analysis to extend"
|
||||
)
|
||||
problem_context: Optional[str] = Field(
|
||||
None, description="Additional context about the problem or goal"
|
||||
)
|
||||
focus_areas: Optional[List[str]] = Field(
|
||||
None,
|
||||
description="Specific aspects to focus on (architecture, performance, security, etc.)",
|
||||
)
|
||||
reference_files: Optional[List[str]] = Field(
|
||||
None, description="Optional file paths for additional context"
|
||||
)
|
||||
|
||||
|
||||
class ThinkDeeperTool(BaseTool):
|
||||
"""Extended thinking and reasoning tool"""
|
||||
|
||||
def get_name(self) -> str:
|
||||
return "think_deeper"
|
||||
|
||||
def get_description(self) -> str:
|
||||
return (
|
||||
"EXTENDED THINKING & REASONING - Your deep thinking partner for complex problems. "
|
||||
"Use this when you need to extend your analysis, explore alternatives, or validate approaches. "
|
||||
"Perfect for: architecture decisions, complex bugs, performance challenges, security analysis. "
|
||||
"Triggers: 'think deeper', 'ultrathink', 'extend my analysis', 'explore alternatives'. "
|
||||
"I'll challenge assumptions, find edge cases, and provide alternative solutions."
|
||||
)
|
||||
|
||||
def get_input_schema(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"current_analysis": {
|
||||
"type": "string",
|
||||
"description": "Your current thinking/analysis to extend and validate",
|
||||
},
|
||||
"problem_context": {
|
||||
"type": "string",
|
||||
"description": "Additional context about the problem or goal",
|
||||
},
|
||||
"focus_areas": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Specific aspects to focus on (architecture, performance, security, etc.)",
|
||||
},
|
||||
"reference_files": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"description": "Optional file paths for additional context",
|
||||
},
|
||||
"temperature": {
|
||||
"type": "number",
|
||||
"description": "Temperature for creative thinking (0-1, default 0.7)",
|
||||
"minimum": 0,
|
||||
"maximum": 1,
|
||||
},
|
||||
"max_tokens": {
|
||||
"type": "integer",
|
||||
"description": "Maximum tokens in response",
|
||||
"default": 8192,
|
||||
},
|
||||
},
|
||||
"required": ["current_analysis"],
|
||||
}
|
||||
|
||||
def get_system_prompt(self) -> str:
|
||||
return THINK_DEEPER_PROMPT
|
||||
|
||||
def get_default_temperature(self) -> float:
|
||||
return TEMPERATURE_CREATIVE
|
||||
|
||||
def get_request_model(self):
|
||||
return ThinkDeeperRequest
|
||||
|
||||
async def prepare_prompt(self, request: ThinkDeeperRequest) -> str:
|
||||
"""Prepare the full prompt for extended thinking"""
|
||||
# Build context parts
|
||||
context_parts = [
|
||||
f"=== CLAUDE'S CURRENT ANALYSIS ===\n{request.current_analysis}\n=== END ANALYSIS ==="
|
||||
]
|
||||
|
||||
if request.problem_context:
|
||||
context_parts.append(
|
||||
f"\n=== PROBLEM CONTEXT ===\n{request.problem_context}\n=== END CONTEXT ==="
|
||||
)
|
||||
|
||||
# Add reference files if provided
|
||||
if request.reference_files:
|
||||
file_content, _ = read_files(request.reference_files)
|
||||
context_parts.append(
|
||||
f"\n=== REFERENCE FILES ===\n{file_content}\n=== END FILES ==="
|
||||
)
|
||||
|
||||
full_context = "\n".join(context_parts)
|
||||
|
||||
# Check token limits
|
||||
within_limit, estimated_tokens = check_token_limit(full_context)
|
||||
if not within_limit:
|
||||
raise ValueError(
|
||||
f"Context too large (~{estimated_tokens:,} tokens). "
|
||||
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
||||
)
|
||||
|
||||
# Add focus areas instruction if specified
|
||||
focus_instruction = ""
|
||||
if request.focus_areas:
|
||||
areas = ", ".join(request.focus_areas)
|
||||
focus_instruction = f"\n\nFOCUS AREAS: Please pay special attention to {areas} aspects."
|
||||
|
||||
# Combine system prompt with context
|
||||
full_prompt = f"""{self.get_system_prompt()}{focus_instruction}
|
||||
|
||||
{full_context}
|
||||
|
||||
Please provide deep analysis that extends Claude's thinking with:
|
||||
1. Alternative approaches and solutions
|
||||
2. Edge cases and potential failure modes
|
||||
3. Critical evaluation of assumptions
|
||||
4. Concrete implementation suggestions
|
||||
5. Risk assessment and mitigation strategies"""
|
||||
|
||||
return full_prompt
|
||||
|
||||
def format_response(
|
||||
self, response: str, request: ThinkDeeperRequest
|
||||
) -> str:
|
||||
"""Format the response with clear attribution"""
|
||||
return f"Extended Analysis by Gemini:\n\n{response}"
|
||||
Reference in New Issue
Block a user