Files
my-pal-mcp-server/tools/review_code.py
Fahad 1aa19548d1 feat: complete redesign to v2.4.0 - Claude's ultimate development partner
Major redesign of Gemini MCP Server with modular architecture:

- Removed all emoji characters from tool outputs for clean terminal display
- Kept review category emojis (🔴🟠🟡🟢) per user preference
- Added 4 specialized tools:
  - think_deeper: Extended reasoning and problem-solving (temp 0.7)
  - review_code: Professional code review with severity levels (temp 0.2)
  - debug_issue: Root cause analysis and debugging (temp 0.2)
  - analyze: General-purpose file analysis (temp 0.2)
- Modular architecture with base tool class and Pydantic models
- Verbose tool descriptions with natural language triggers
- Updated README with comprehensive examples and real-world use cases
- All 25 tests passing, type checking clean, critical linting clean

BREAKING CHANGE: Removed analyze_code tool in favor of specialized tools

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-08 22:30:45 +04:00

161 lines
5.4 KiB
Python

"""
Code Review tool - Comprehensive code analysis and review
"""
from typing import Dict, Any, List, Optional
from pydantic import Field
from .base import BaseTool, ToolRequest
from prompts import REVIEW_CODE_PROMPT
from utils import read_files, check_token_limit
from config import TEMPERATURE_ANALYTICAL, MAX_CONTEXT_TOKENS
class ReviewCodeRequest(ToolRequest):
"""Request model for review_code tool"""
files: List[str] = Field(..., description="Code files to review")
review_type: str = Field(
"full", description="Type of review: full|security|performance|quick"
)
focus_on: Optional[str] = Field(
None, description="Specific aspects to focus on during review"
)
standards: Optional[str] = Field(
None, description="Coding standards or guidelines to enforce"
)
severity_filter: str = Field(
"all",
description="Minimum severity to report: critical|high|medium|all",
)
class ReviewCodeTool(BaseTool):
"""Professional code review tool"""
def get_name(self) -> str:
return "review_code"
def get_description(self) -> str:
return (
"PROFESSIONAL CODE REVIEW - Comprehensive analysis for bugs, security, and quality. "
"Use this for thorough code review with actionable feedback. "
"Triggers: 'review this code', 'check for issues', 'find bugs', 'security audit'. "
"I'll identify issues by severity (Critical→High→Medium→Low) with specific fixes. "
"Supports focused reviews: security, performance, or quick checks."
)
def get_input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Code files to review",
},
"review_type": {
"type": "string",
"enum": ["full", "security", "performance", "quick"],
"default": "full",
"description": "Type of review to perform",
},
"focus_on": {
"type": "string",
"description": "Specific aspects to focus on",
},
"standards": {
"type": "string",
"description": "Coding standards to enforce",
},
"severity_filter": {
"type": "string",
"enum": ["critical", "high", "medium", "all"],
"default": "all",
"description": "Minimum severity level to report",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2 for consistency)",
"minimum": 0,
"maximum": 1,
},
},
"required": ["files"],
}
def get_system_prompt(self) -> str:
return REVIEW_CODE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_request_model(self):
return ReviewCodeRequest
async def prepare_prompt(self, request: ReviewCodeRequest) -> str:
"""Prepare the code review prompt"""
# Read all files
file_content, summary = read_files(request.files)
# Check token limits
within_limit, estimated_tokens = check_token_limit(file_content)
if not within_limit:
raise ValueError(
f"Code too large (~{estimated_tokens:,} tokens). "
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
)
# Build review instructions
review_focus = []
if request.review_type == "security":
review_focus.append(
"Focus on security vulnerabilities and authentication issues"
)
elif request.review_type == "performance":
review_focus.append(
"Focus on performance bottlenecks and optimization opportunities"
)
elif request.review_type == "quick":
review_focus.append(
"Provide a quick review focusing on critical issues only"
)
if request.focus_on:
review_focus.append(
f"Pay special attention to: {request.focus_on}"
)
if request.standards:
review_focus.append(
f"Enforce these standards: {request.standards}"
)
if request.severity_filter != "all":
review_focus.append(
f"Only report issues of {request.severity_filter} severity or higher"
)
focus_instruction = "\n".join(review_focus) if review_focus else ""
# Combine everything
full_prompt = f"""{self.get_system_prompt()}
{focus_instruction}
=== CODE TO REVIEW ===
{file_content}
=== END CODE ===
Please provide a comprehensive code review following the format specified in the system prompt."""
return full_prompt
def format_response(
self, response: str, request: ReviewCodeRequest
) -> str:
"""Format the review response"""
header = f"Code Review ({request.review_type.upper()})"
if request.focus_on:
header += f" - Focus: {request.focus_on}"
return f"{header}\n{'=' * 50}\n\n{response}"