Major redesign of Gemini MCP Server with modular architecture: - Removed all emoji characters from tool outputs for clean terminal display - Kept review category emojis (🔴🟠🟡🟢) per user preference - Added 4 specialized tools: - think_deeper: Extended reasoning and problem-solving (temp 0.7) - review_code: Professional code review with severity levels (temp 0.2) - debug_issue: Root cause analysis and debugging (temp 0.2) - analyze: General-purpose file analysis (temp 0.2) - Modular architecture with base tool class and Pydantic models - Verbose tool descriptions with natural language triggers - Updated README with comprehensive examples and real-world use cases - All 25 tests passing, type checking clean, critical linting clean BREAKING CHANGE: Removed analyze_code tool in favor of specialized tools 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
152 lines
5.3 KiB
Python
152 lines
5.3 KiB
Python
"""
|
|
Analyze tool - General-purpose code and file analysis
|
|
"""
|
|
|
|
from typing import Dict, Any, List, Optional
|
|
from pydantic import Field
|
|
from .base import BaseTool, ToolRequest
|
|
from prompts import ANALYZE_PROMPT
|
|
from utils import read_files, check_token_limit
|
|
from config import TEMPERATURE_ANALYTICAL, MAX_CONTEXT_TOKENS
|
|
|
|
|
|
class AnalyzeRequest(ToolRequest):
|
|
"""Request model for analyze tool"""
|
|
|
|
files: List[str] = Field(..., description="Files to analyze")
|
|
question: str = Field(..., description="What to analyze or look for")
|
|
analysis_type: Optional[str] = Field(
|
|
None,
|
|
description="Type of analysis: architecture|performance|security|quality|general",
|
|
)
|
|
output_format: Optional[str] = Field(
|
|
"detailed", description="Output format: summary|detailed|actionable"
|
|
)
|
|
|
|
|
|
class AnalyzeTool(BaseTool):
|
|
"""General-purpose file and code analysis tool"""
|
|
|
|
def get_name(self) -> str:
|
|
return "analyze"
|
|
|
|
def get_description(self) -> str:
|
|
return (
|
|
"ANALYZE FILES & CODE - General-purpose analysis for understanding code. "
|
|
"Use this for examining files, understanding architecture, or investigating specific aspects. "
|
|
"Triggers: 'analyze these files', 'examine this code', 'understand this'. "
|
|
"Perfect for: codebase exploration, dependency analysis, pattern detection. "
|
|
"Always uses file paths for clean terminal output."
|
|
)
|
|
|
|
def get_input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"files": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "Files to analyze",
|
|
},
|
|
"question": {
|
|
"type": "string",
|
|
"description": "What to analyze or look for",
|
|
},
|
|
"analysis_type": {
|
|
"type": "string",
|
|
"enum": [
|
|
"architecture",
|
|
"performance",
|
|
"security",
|
|
"quality",
|
|
"general",
|
|
],
|
|
"description": "Type of analysis to perform",
|
|
},
|
|
"output_format": {
|
|
"type": "string",
|
|
"enum": ["summary", "detailed", "actionable"],
|
|
"default": "detailed",
|
|
"description": "How to format the output",
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Temperature (0-1, default 0.2)",
|
|
"minimum": 0,
|
|
"maximum": 1,
|
|
},
|
|
},
|
|
"required": ["files", "question"],
|
|
}
|
|
|
|
def get_system_prompt(self) -> str:
|
|
return ANALYZE_PROMPT
|
|
|
|
def get_default_temperature(self) -> float:
|
|
return TEMPERATURE_ANALYTICAL
|
|
|
|
def get_request_model(self):
|
|
return AnalyzeRequest
|
|
|
|
async def prepare_prompt(self, request: AnalyzeRequest) -> str:
|
|
"""Prepare the analysis prompt"""
|
|
# Read all files
|
|
file_content, summary = read_files(request.files)
|
|
|
|
# Check token limits
|
|
within_limit, estimated_tokens = check_token_limit(file_content)
|
|
if not within_limit:
|
|
raise ValueError(
|
|
f"Files too large (~{estimated_tokens:,} tokens). "
|
|
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
|
)
|
|
|
|
# Build analysis instructions
|
|
analysis_focus = []
|
|
|
|
if request.analysis_type:
|
|
type_focus = {
|
|
"architecture": "Focus on architectural patterns, structure, and design decisions",
|
|
"performance": "Focus on performance characteristics and optimization opportunities",
|
|
"security": "Focus on security implications and potential vulnerabilities",
|
|
"quality": "Focus on code quality, maintainability, and best practices",
|
|
"general": "Provide a comprehensive general analysis",
|
|
}
|
|
analysis_focus.append(type_focus.get(request.analysis_type, ""))
|
|
|
|
if request.output_format == "summary":
|
|
analysis_focus.append("Provide a concise summary of key findings")
|
|
elif request.output_format == "actionable":
|
|
analysis_focus.append(
|
|
"Focus on actionable insights and specific recommendations"
|
|
)
|
|
|
|
focus_instruction = "\n".join(analysis_focus) if analysis_focus else ""
|
|
|
|
# Combine everything
|
|
full_prompt = f"""{self.get_system_prompt()}
|
|
|
|
{focus_instruction}
|
|
|
|
=== USER QUESTION ===
|
|
{request.question}
|
|
=== END QUESTION ===
|
|
|
|
=== FILES TO ANALYZE ===
|
|
{file_content}
|
|
=== END FILES ===
|
|
|
|
Please analyze these files to answer the user's question."""
|
|
|
|
return full_prompt
|
|
|
|
def format_response(self, response: str, request: AnalyzeRequest) -> str:
|
|
"""Format the analysis response"""
|
|
header = f"Analysis: {request.question[:50]}..."
|
|
if request.analysis_type:
|
|
header = f"{request.analysis_type.upper()} Analysis"
|
|
|
|
summary_text = f"Analyzed {len(request.files)} file(s)"
|
|
|
|
return f"{header}\n{summary_text}\n{'=' * 50}\n\n{response}"
|