Files
my-pal-mcp-server/tools/analyze.py
Fahad 1aa19548d1 feat: complete redesign to v2.4.0 - Claude's ultimate development partner
Major redesign of Gemini MCP Server with modular architecture:

- Removed all emoji characters from tool outputs for clean terminal display
- Kept review category emojis (🔴🟠🟡🟢) per user preference
- Added 4 specialized tools:
  - think_deeper: Extended reasoning and problem-solving (temp 0.7)
  - review_code: Professional code review with severity levels (temp 0.2)
  - debug_issue: Root cause analysis and debugging (temp 0.2)
  - analyze: General-purpose file analysis (temp 0.2)
- Modular architecture with base tool class and Pydantic models
- Verbose tool descriptions with natural language triggers
- Updated README with comprehensive examples and real-world use cases
- All 25 tests passing, type checking clean, critical linting clean

BREAKING CHANGE: Removed analyze_code tool in favor of specialized tools

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-08 22:30:45 +04:00

152 lines
5.3 KiB
Python

"""
Analyze tool - General-purpose code and file analysis
"""
from typing import Dict, Any, List, Optional
from pydantic import Field
from .base import BaseTool, ToolRequest
from prompts import ANALYZE_PROMPT
from utils import read_files, check_token_limit
from config import TEMPERATURE_ANALYTICAL, MAX_CONTEXT_TOKENS
class AnalyzeRequest(ToolRequest):
"""Request model for analyze tool"""
files: List[str] = Field(..., description="Files to analyze")
question: str = Field(..., description="What to analyze or look for")
analysis_type: Optional[str] = Field(
None,
description="Type of analysis: architecture|performance|security|quality|general",
)
output_format: Optional[str] = Field(
"detailed", description="Output format: summary|detailed|actionable"
)
class AnalyzeTool(BaseTool):
"""General-purpose file and code analysis tool"""
def get_name(self) -> str:
return "analyze"
def get_description(self) -> str:
return (
"ANALYZE FILES & CODE - General-purpose analysis for understanding code. "
"Use this for examining files, understanding architecture, or investigating specific aspects. "
"Triggers: 'analyze these files', 'examine this code', 'understand this'. "
"Perfect for: codebase exploration, dependency analysis, pattern detection. "
"Always uses file paths for clean terminal output."
)
def get_input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files to analyze",
},
"question": {
"type": "string",
"description": "What to analyze or look for",
},
"analysis_type": {
"type": "string",
"enum": [
"architecture",
"performance",
"security",
"quality",
"general",
],
"description": "Type of analysis to perform",
},
"output_format": {
"type": "string",
"enum": ["summary", "detailed", "actionable"],
"default": "detailed",
"description": "How to format the output",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2)",
"minimum": 0,
"maximum": 1,
},
},
"required": ["files", "question"],
}
def get_system_prompt(self) -> str:
return ANALYZE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_request_model(self):
return AnalyzeRequest
async def prepare_prompt(self, request: AnalyzeRequest) -> str:
"""Prepare the analysis prompt"""
# Read all files
file_content, summary = read_files(request.files)
# Check token limits
within_limit, estimated_tokens = check_token_limit(file_content)
if not within_limit:
raise ValueError(
f"Files too large (~{estimated_tokens:,} tokens). "
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
)
# Build analysis instructions
analysis_focus = []
if request.analysis_type:
type_focus = {
"architecture": "Focus on architectural patterns, structure, and design decisions",
"performance": "Focus on performance characteristics and optimization opportunities",
"security": "Focus on security implications and potential vulnerabilities",
"quality": "Focus on code quality, maintainability, and best practices",
"general": "Provide a comprehensive general analysis",
}
analysis_focus.append(type_focus.get(request.analysis_type, ""))
if request.output_format == "summary":
analysis_focus.append("Provide a concise summary of key findings")
elif request.output_format == "actionable":
analysis_focus.append(
"Focus on actionable insights and specific recommendations"
)
focus_instruction = "\n".join(analysis_focus) if analysis_focus else ""
# Combine everything
full_prompt = f"""{self.get_system_prompt()}
{focus_instruction}
=== USER QUESTION ===
{request.question}
=== END QUESTION ===
=== FILES TO ANALYZE ===
{file_content}
=== END FILES ===
Please analyze these files to answer the user's question."""
return full_prompt
def format_response(self, response: str, request: AnalyzeRequest) -> str:
"""Format the analysis response"""
header = f"Analysis: {request.question[:50]}..."
if request.analysis_type:
header = f"{request.analysis_type.upper()} Analysis"
summary_text = f"Analyzed {len(request.files)} file(s)"
return f"{header}\n{summary_text}\n{'=' * 50}\n\n{response}"