Major improvements to thinking capabilities and API integration: - Remove all output token limits for future-proof responses - Add 5-level thinking mode system: minimal, low, medium, high, max - Migrate from google-generativeai to google-genai library - Implement native thinkingBudget support for Gemini 2.5 Pro - Set medium thinking as default for all tools, max for think_deeper 🧠 Thinking Modes: - minimal (128 tokens) - simple tasks - low (2048 tokens) - basic reasoning - medium (8192 tokens) - default for most tools - high (16384 tokens) - complex analysis - max (32768 tokens) - default for think_deeper 🔧 Technical Changes: - Complete migration to google-genai>=1.19.0 - Remove google-generativeai dependency - Add ThinkingConfig with thinking_budget parameter - Update all tools to support thinking_mode parameter - Comprehensive test suite with 37 passing unit tests - CI-friendly testing (no API key required for unit tests) - Live integration tests for API verification 🧪 Testing & CI: - Add GitHub Actions workflow with multi-Python support - Unit tests use mocks, no API key required - Live integration tests optional with API key - Contributing guide with development setup - All tests pass without external dependencies 🐛 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
154 lines
5.5 KiB
Python
154 lines
5.5 KiB
Python
"""
|
|
Think Deeper tool - Extended reasoning and problem-solving
|
|
"""
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from pydantic import Field
|
|
|
|
from config import MAX_CONTEXT_TOKENS, TEMPERATURE_CREATIVE
|
|
from prompts import THINK_DEEPER_PROMPT
|
|
from utils import check_token_limit, read_files
|
|
|
|
from .base import BaseTool, ToolRequest
|
|
|
|
|
|
class ThinkDeeperRequest(ToolRequest):
|
|
"""Request model for think_deeper tool"""
|
|
|
|
current_analysis: str = Field(
|
|
..., description="Claude's current thinking/analysis to extend"
|
|
)
|
|
problem_context: Optional[str] = Field(
|
|
None, description="Additional context about the problem or goal"
|
|
)
|
|
focus_areas: Optional[List[str]] = Field(
|
|
None,
|
|
description="Specific aspects to focus on (architecture, performance, security, etc.)",
|
|
)
|
|
files: Optional[List[str]] = Field(
|
|
None, description="Optional file paths or directories for additional context"
|
|
)
|
|
|
|
|
|
class ThinkDeeperTool(BaseTool):
|
|
"""Extended thinking and reasoning tool"""
|
|
|
|
def get_name(self) -> str:
|
|
return "think_deeper"
|
|
|
|
def get_description(self) -> str:
|
|
return (
|
|
"EXTENDED THINKING & REASONING - Your deep thinking partner for complex problems. "
|
|
"Use this when you need to extend your analysis, explore alternatives, or validate approaches. "
|
|
"Perfect for: architecture decisions, complex bugs, performance challenges, security analysis. "
|
|
"Triggers: 'think deeper', 'ultrathink', 'extend my analysis', 'explore alternatives'. "
|
|
"I'll challenge assumptions, find edge cases, and provide alternative solutions."
|
|
)
|
|
|
|
def get_input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"current_analysis": {
|
|
"type": "string",
|
|
"description": "Your current thinking/analysis to extend and validate",
|
|
},
|
|
"problem_context": {
|
|
"type": "string",
|
|
"description": "Additional context about the problem or goal",
|
|
},
|
|
"focus_areas": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "Specific aspects to focus on (architecture, performance, security, etc.)",
|
|
},
|
|
"files": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "Optional file paths or directories for additional context",
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Temperature for creative thinking (0-1, default 0.7)",
|
|
"minimum": 0,
|
|
"maximum": 1,
|
|
},
|
|
"thinking_mode": {
|
|
"type": "string",
|
|
"enum": ["minimal", "low", "medium", "high", "max"],
|
|
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
|
|
"default": "max",
|
|
},
|
|
},
|
|
"required": ["current_analysis"],
|
|
}
|
|
|
|
def get_system_prompt(self) -> str:
|
|
return THINK_DEEPER_PROMPT
|
|
|
|
def get_default_temperature(self) -> float:
|
|
return TEMPERATURE_CREATIVE
|
|
|
|
def get_default_thinking_mode(self) -> str:
|
|
"""ThinkDeeper uses maximum thinking by default"""
|
|
return "max"
|
|
|
|
def get_request_model(self):
|
|
return ThinkDeeperRequest
|
|
|
|
async def prepare_prompt(self, request: ThinkDeeperRequest) -> str:
|
|
"""Prepare the full prompt for extended thinking"""
|
|
# Build context parts
|
|
context_parts = [
|
|
f"=== CLAUDE'S CURRENT ANALYSIS ===\n{request.current_analysis}\n=== END ANALYSIS ==="
|
|
]
|
|
|
|
if request.problem_context:
|
|
context_parts.append(
|
|
f"\n=== PROBLEM CONTEXT ===\n{request.problem_context}\n=== END CONTEXT ==="
|
|
)
|
|
|
|
# Add reference files if provided
|
|
if request.files:
|
|
file_content, _ = read_files(request.files)
|
|
context_parts.append(
|
|
f"\n=== REFERENCE FILES ===\n{file_content}\n=== END FILES ==="
|
|
)
|
|
|
|
full_context = "\n".join(context_parts)
|
|
|
|
# Check token limits
|
|
within_limit, estimated_tokens = check_token_limit(full_context)
|
|
if not within_limit:
|
|
raise ValueError(
|
|
f"Context too large (~{estimated_tokens:,} tokens). "
|
|
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
|
)
|
|
|
|
# Add focus areas instruction if specified
|
|
focus_instruction = ""
|
|
if request.focus_areas:
|
|
areas = ", ".join(request.focus_areas)
|
|
focus_instruction = f"\n\nFOCUS AREAS: Please pay special attention to {areas} aspects."
|
|
|
|
# Combine system prompt with context
|
|
full_prompt = f"""{self.get_system_prompt()}{focus_instruction}
|
|
|
|
{full_context}
|
|
|
|
Please provide deep analysis that extends Claude's thinking with:
|
|
1. Alternative approaches and solutions
|
|
2. Edge cases and potential failure modes
|
|
3. Critical evaluation of assumptions
|
|
4. Concrete implementation suggestions
|
|
5. Risk assessment and mitigation strategies"""
|
|
|
|
return full_prompt
|
|
|
|
def format_response(
|
|
self, response: str, request: ThinkDeeperRequest
|
|
) -> str:
|
|
"""Format the response with clear attribution"""
|
|
return f"Extended Analysis by Gemini:\n\n{response}"
|