""" Think Deeper tool - Extended reasoning and problem-solving """ from typing import Any, Dict, List, Optional from pydantic import Field from config import MAX_CONTEXT_TOKENS, TEMPERATURE_CREATIVE from prompts import THINK_DEEPER_PROMPT from utils import check_token_limit, read_files from .base import BaseTool, ToolRequest class ThinkDeeperRequest(ToolRequest): """Request model for think_deeper tool""" current_analysis: str = Field( ..., description="Claude's current thinking/analysis to extend" ) problem_context: Optional[str] = Field( None, description="Additional context about the problem or goal" ) focus_areas: Optional[List[str]] = Field( None, description="Specific aspects to focus on (architecture, performance, security, etc.)", ) files: Optional[List[str]] = Field( None, description="Optional file paths or directories for additional context" ) class ThinkDeeperTool(BaseTool): """Extended thinking and reasoning tool""" def get_name(self) -> str: return "think_deeper" def get_description(self) -> str: return ( "EXTENDED THINKING & REASONING - Your deep thinking partner for complex problems. " "Use this when you need to extend your analysis, explore alternatives, or validate approaches. " "Perfect for: architecture decisions, complex bugs, performance challenges, security analysis. " "Triggers: 'think deeper', 'ultrathink', 'extend my analysis', 'explore alternatives'. " "I'll challenge assumptions, find edge cases, and provide alternative solutions." ) def get_input_schema(self) -> Dict[str, Any]: return { "type": "object", "properties": { "current_analysis": { "type": "string", "description": "Your current thinking/analysis to extend and validate", }, "problem_context": { "type": "string", "description": "Additional context about the problem or goal", }, "focus_areas": { "type": "array", "items": {"type": "string"}, "description": "Specific aspects to focus on (architecture, performance, security, etc.)", }, "files": { "type": "array", "items": {"type": "string"}, "description": "Optional file paths or directories for additional context", }, "temperature": { "type": "number", "description": "Temperature for creative thinking (0-1, default 0.7)", "minimum": 0, "maximum": 1, }, "thinking_mode": { "type": "string", "enum": ["minimal", "low", "medium", "high", "max"], "description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)", "default": "max", }, }, "required": ["current_analysis"], } def get_system_prompt(self) -> str: return THINK_DEEPER_PROMPT def get_default_temperature(self) -> float: return TEMPERATURE_CREATIVE def get_default_thinking_mode(self) -> str: """ThinkDeeper uses maximum thinking by default""" return "max" def get_request_model(self): return ThinkDeeperRequest async def prepare_prompt(self, request: ThinkDeeperRequest) -> str: """Prepare the full prompt for extended thinking""" # Build context parts context_parts = [ f"=== CLAUDE'S CURRENT ANALYSIS ===\n{request.current_analysis}\n=== END ANALYSIS ===" ] if request.problem_context: context_parts.append( f"\n=== PROBLEM CONTEXT ===\n{request.problem_context}\n=== END CONTEXT ===" ) # Add reference files if provided if request.files: file_content, _ = read_files(request.files) context_parts.append( f"\n=== REFERENCE FILES ===\n{file_content}\n=== END FILES ===" ) full_context = "\n".join(context_parts) # Check token limits within_limit, estimated_tokens = check_token_limit(full_context) if not within_limit: raise ValueError( f"Context too large (~{estimated_tokens:,} tokens). " f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens." ) # Add focus areas instruction if specified focus_instruction = "" if request.focus_areas: areas = ", ".join(request.focus_areas) focus_instruction = f"\n\nFOCUS AREAS: Please pay special attention to {areas} aspects." # Combine system prompt with context full_prompt = f"""{self.get_system_prompt()}{focus_instruction} {full_context} Please provide deep analysis that extends Claude's thinking with: 1. Alternative approaches and solutions 2. Edge cases and potential failure modes 3. Critical evaluation of assumptions 4. Concrete implementation suggestions 5. Risk assessment and mitigation strategies""" return full_prompt def format_response( self, response: str, request: ThinkDeeperRequest ) -> str: """Format the response with clear attribution""" return f"Extended Analysis by Gemini:\n\n{response}"