Files
my-pal-mcp-server/docs/adding_providers.md
Fahad ff9a07a37a feat!: breaking change - OpenRouter models are now read from conf/openrouter_models.json while Custom / Self-hosted models are read from conf/custom_models.json
feat: Azure OpenAI / Azure AI Foundry support. Models should be defined in conf/azure_models.json (or a custom path). See .env.example for environment variables or see readme. https://github.com/BeehiveInnovations/zen-mcp-server/issues/265

feat: OpenRouter / Custom Models / Azure can separately also use custom config paths now (see .env.example )

refactor: Model registry class made abstract, OpenRouter / Custom Provider / Azure OpenAI now subclass these

refactor: breaking change: `is_custom` property has been removed from model_capabilities.py (and thus custom_models.json) given each models are now read from separate configuration files
2025-10-04 21:10:56 +04:00

314 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Adding a New Provider
This guide explains how to add support for a new AI model provider to the Zen MCP Server. The provider system is designed to be extensible and follows a simple pattern.
## Overview
Each provider:
- Inherits from `ModelProvider` (base class) or `OpenAICompatibleProvider` (for OpenAI-compatible APIs)
- Defines supported models using `ModelCapabilities` objects
- Implements the minimal abstract hooks (`get_provider_type()` and `generate_content()`)
- Gets wired into `configure_providers()` so environment variables control activation
- Can leverage helper subclasses (e.g., `AzureOpenAIProvider`) when only client wiring differs
### Intelligence score cheatsheet
Set `intelligence_score` (120) when you want deterministic ordering in auto
mode or the `listmodels` output. The runtime rank starts from this human score
and adds smaller bonuses for context window, extended thinking, and other
features ([details here](model_ranking.md)).
## Choose Your Implementation Path
**Option A: Full Provider (`ModelProvider`)**
- For APIs with unique features or custom authentication
- Complete control over API calls and response handling
- Populate `MODEL_CAPABILITIES`, implement `generate_content()` and `get_provider_type()`, and only override `get_all_model_capabilities()` / `_lookup_capabilities()` when your catalogue comes from a registry or remote source (override `count_tokens()` only when you have a provider-accurate tokenizer)
**Option B: OpenAI-Compatible (`OpenAICompatibleProvider`)**
- For APIs that follow OpenAI's chat completion format
- Supply `MODEL_CAPABILITIES`, override `get_provider_type()`, and optionally adjust configuration (the base class handles alias resolution, validation, and request wiring)
- Inherits all API handling automatically
⚠️ **Important**: If you implement a custom `generate_content()`, call `_resolve_model_name()` before invoking the SDK so aliases (e.g. `"gpt"``"gpt-4"`) resolve correctly. The shared implementations already do this for you.
**Option C: Azure OpenAI (`AzureOpenAIProvider`)**
- For Azure-hosted deployments of OpenAI models
- Reuses the OpenAI-compatible pipeline but swaps in the `AzureOpenAI` client and a deployment mapping (canonical model → deployment ID)
- Define deployments in [`conf/azure_models.json`](../conf/azure_models.json) (or the file referenced by `AZURE_MODELS_CONFIG_PATH`).
- Entries follow the [`ModelCapabilities`](../providers/shared/model_capabilities.py) schema and must include a `deployment` identifier.
See [Azure OpenAI Configuration](azure_openai.md) for a step-by-step walkthrough.
## Step-by-Step Guide
### 1. Add Provider Type
Add your provider to the `ProviderType` enum in `providers/shared/provider_type.py`:
```python
class ProviderType(Enum):
GOOGLE = "google"
OPENAI = "openai"
EXAMPLE = "example" # Add this
```
### 2. Create the Provider Implementation
#### Option A: Full Provider (Native Implementation)
Create `providers/example.py`:
```python
"""Example model provider implementation."""
import logging
from typing import Optional
from .base import ModelProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
logger = logging.getLogger(__name__)
class ExampleModelProvider(ModelProvider):
"""Example model provider implementation."""
MODEL_CAPABILITIES = {
"example-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-large",
friendly_name="Example Large",
intelligence_score=18,
context_window=100_000,
max_output_tokens=50_000,
supports_extended_thinking=False,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
description="Large model for complex tasks",
aliases=["large", "big"],
),
"example-small": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-small",
friendly_name="Example Small",
intelligence_score=14,
context_window=32_000,
max_output_tokens=16_000,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
description="Fast model for simple tasks",
aliases=["small", "fast"],
),
}
def __init__(self, api_key: str, **kwargs):
super().__init__(api_key, **kwargs)
# Initialize your API client here
def get_all_model_capabilities(self) -> dict[str, ModelCapabilities]:
return dict(self.MODEL_CAPABILITIES)
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
resolved_name = self._resolve_model_name(model_name)
# Your API call logic here
# response = your_api_client.generate(...)
return ModelResponse(
content="Generated response",
usage={"input_tokens": 100, "output_tokens": 50, "total_tokens": 150},
model_name=resolved_name,
friendly_name="Example",
provider=ProviderType.EXAMPLE,
)
```
`ModelProvider.get_capabilities()` automatically resolves aliases, enforces the
shared restriction service, and returns the correct `ModelCapabilities`
instance. Override `_lookup_capabilities()` only when you source capabilities
from a registry or remote API. `ModelProvider.count_tokens()` uses a simple
4-characters-per-token estimate so providers work out of the box—override it
only when you can call the provider's real tokenizer (for example, the
OpenAI-compatible base class integrates `tiktoken`).
#### Option B: OpenAI-Compatible Provider (Simplified)
For OpenAI-compatible APIs:
```python
"""Example OpenAI-compatible provider."""
from typing import Optional
from .openai_compatible import OpenAICompatibleProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
class ExampleProvider(OpenAICompatibleProvider):
"""Example OpenAI-compatible provider."""
FRIENDLY_NAME = "Example"
# Define models using ModelCapabilities (consistent with other providers)
MODEL_CAPABILITIES = {
"example-model-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-model-large",
friendly_name="Example Large",
context_window=128_000,
max_output_tokens=64_000,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
aliases=["large", "big"],
),
}
def __init__(self, api_key: str, **kwargs):
kwargs.setdefault("base_url", "https://api.example.com/v1")
super().__init__(api_key, **kwargs)
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
```
`OpenAICompatibleProvider` already exposes the declared models via
`MODEL_CAPABILITIES`, resolves aliases through the shared base pipeline, and
enforces restrictions. Most subclasses only need to provide the class metadata
shown above.
### 3. Register Your Provider
Add environment variable mapping in `providers/registry.py`:
```python
# In _get_api_key_for_provider (providers/registry.py), add:
ProviderType.EXAMPLE: "EXAMPLE_API_KEY",
```
Add to `server.py`:
1. **Import your provider**:
```python
from providers.example import ExampleModelProvider
```
2. **Add to `configure_providers()` function**:
```python
# Check for Example API key
example_key = os.getenv("EXAMPLE_API_KEY")
if example_key:
ModelProviderRegistry.register_provider(ProviderType.EXAMPLE, ExampleModelProvider)
logger.info("Example API key found - Example models available")
```
3. **Add to provider priority** (edit `ModelProviderRegistry.PROVIDER_PRIORITY_ORDER` in `providers/registry.py`): insert your provider in the list at the appropriate point in the cascade of native → custom → catch-all providers.
### 4. Environment Configuration
Add to your `.env` file:
```bash
# Your provider's API key
EXAMPLE_API_KEY=your_api_key_here
# Optional: Disable specific tools
DISABLED_TOOLS=debug,tracer
# Optional (OpenAI-compatible providers): Restrict accessible models
EXAMPLE_ALLOWED_MODELS=example-model-large,example-model-small
```
For Azure OpenAI deployments:
```bash
AZURE_OPENAI_API_KEY=your_azure_openai_key_here
AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com/
# Models are defined in conf/azure_models.json (or AZURE_MODELS_CONFIG_PATH)
# AZURE_OPENAI_API_VERSION=2024-02-15-preview
# AZURE_OPENAI_ALLOWED_MODELS=gpt-4o,gpt-4o-mini
# AZURE_MODELS_CONFIG_PATH=/absolute/path/to/custom_azure_models.json
```
You can also define Azure models in [`conf/azure_models.json`](../conf/azure_models.json) (the bundled file is empty so you can copy it safely). Each entry mirrors the `ModelCapabilities` schema and must include a `deployment` field. Set `AZURE_MODELS_CONFIG_PATH` if you maintain a custom copy outside the repository.
**Note**: The `description` field in `ModelCapabilities` helps Claude choose the best model in auto mode.
### 5. Test Your Provider
Create basic tests to verify your implementation:
```python
# Test capabilities
provider = ExampleModelProvider("test-key")
capabilities = provider.get_capabilities("large")
assert capabilities.context_window > 0
assert capabilities.provider == ProviderType.EXAMPLE
```
## Key Concepts
### Provider Priority
When a user requests a model, providers are checked in priority order:
1. **Native providers** (Gemini, OpenAI, Example) - handle their specific models
2. **Custom provider** - handles local/self-hosted models
3. **OpenRouter** - catch-all for everything else
### Model Validation
`ModelProvider.validate_model_name()` delegates to `get_capabilities()` so most
providers can rely on the shared implementation. Override it only when you need
to opt out of that pipeline—for example, `CustomProvider` declines OpenRouter
models so they fall through to the dedicated OpenRouter provider.
### Model Aliases
Aliases declared on `ModelCapabilities` are applied automatically via
`_resolve_model_name()`, and both the validation and request flows call it
before touching your SDK. Override `generate_content()` only when your provider
needs additional alias handling beyond the shared behaviour.
## Important Notes
## Best Practices
- **Be specific in model validation** - only accept models you actually support
- **Use ModelCapabilities objects** consistently (like Gemini provider)
- **Include descriptive aliases** for better user experience
- **Add error handling** and logging for debugging
- **Test with real API calls** to verify everything works
- **Follow the existing patterns** in `providers/gemini.py` and `providers/custom.py`
## Quick Checklist
- [ ] Added to `ProviderType` enum in `providers/shared/provider_type.py`
- [ ] Created provider class with all required methods
- [ ] Added API key mapping in `providers/registry.py`
- [ ] Added to provider priority order in `registry.py`
- [ ] Imported and registered in `server.py`
- [ ] Basic tests verify model validation and capabilities
- [ ] Tested with real API calls
## Examples
See existing implementations:
- **Full provider**: `providers/gemini.py`
- **OpenAI-compatible**: `providers/custom.py`
- **Base classes**: `providers/base.py`