Files
my-pal-mcp-server/tests/test_thinking_modes.py
Beehive Innovations c960bcb720 Add DocGen tool with comprehensive documentation generation capabilities (#109)
* WIP: new workflow architecture

* WIP: further improvements and cleanup

* WIP: cleanup and docks, replace old tool with new

* WIP: cleanup and docks, replace old tool with new

* WIP: new planner implementation using workflow

* WIP: precommit tool working as a workflow instead of a basic tool
Support for passing False to use_assistant_model to skip external models completely and use Claude only

* WIP: precommit workflow version swapped with old

* WIP: codereview

* WIP: replaced codereview

* WIP: replaced codereview

* WIP: replaced refactor

* WIP: workflow for thinkdeep

* WIP: ensure files get embedded correctly

* WIP: thinkdeep replaced with workflow version

* WIP: improved messaging when an external model's response is received

* WIP: analyze tool swapped

* WIP: updated tests
* Extract only the content when building history
* Use "relevant_files" for workflow tools only

* WIP: updated tests
* Extract only the content when building history
* Use "relevant_files" for workflow tools only

* WIP: fixed get_completion_next_steps_message missing param

* Fixed tests
Request for files consistently

* Fixed tests
Request for files consistently

* Fixed tests

* New testgen workflow tool
Updated docs

* Swap testgen workflow

* Fix CI test failures by excluding API-dependent tests

- Update GitHub Actions workflow to exclude simulation tests that require API keys
- Fix collaboration tests to properly mock workflow tool expert analysis calls
- Update test assertions to handle new workflow tool response format
- Ensure unit tests run without external API dependencies in CI

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* WIP - Update tests to match new tools

* WIP - Update tests to match new tools

* WIP - Update tests to match new tools

* Should help with https://github.com/BeehiveInnovations/zen-mcp-server/issues/97
Clear python cache when running script: https://github.com/BeehiveInnovations/zen-mcp-server/issues/96
Improved retry error logging
Cleanup

* WIP - chat tool using new architecture and improved code sharing

* Removed todo

* Removed todo

* Cleanup old name

* Tweak wordings

* Tweak wordings
Migrate old tests

* Support for Flash 2.0 and Flash Lite 2.0

* Support for Flash 2.0 and Flash Lite 2.0

* Support for Flash 2.0 and Flash Lite 2.0
Fixed test

* Improved consensus to use the workflow base class

* Improved consensus to use the workflow base class

* Allow images

* Allow images

* Replaced old consensus tool

* Cleanup tests

* Tests for prompt size

* New tool: docgen
Tests for prompt size
Fixes: https://github.com/BeehiveInnovations/zen-mcp-server/issues/107
Use available token size limits: https://github.com/BeehiveInnovations/zen-mcp-server/issues/105

* Improved docgen prompt
Exclude TestGen from pytest inclusion

* Updated errors

* Lint

* DocGen instructed not to fix bugs, surface them and stick to d

* WIP

* Stop claude from being lazy and only documenting a small handful

* More style rules

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-22 10:21:19 +04:00

436 lines
16 KiB
Python

"""
Tests for thinking_mode functionality across all tools
"""
from unittest.mock import patch
import pytest
from tools.analyze import AnalyzeTool
from tools.codereview import CodeReviewTool
from tools.debug import DebugIssueTool
from tools.thinkdeep import ThinkDeepTool
@pytest.fixture(autouse=True)
def setup_test_env():
"""Set up test environment"""
# PYTEST_CURRENT_TEST is already set by pytest
yield
class TestThinkingModes:
"""Test thinking modes across all tools"""
@patch("config.DEFAULT_THINKING_MODE_THINKDEEP", "high")
def test_default_thinking_modes(self):
"""Test that tools have correct default thinking modes"""
tools = [
(ThinkDeepTool(), "high"),
(AnalyzeTool(), "medium"),
(CodeReviewTool(), "medium"),
(DebugIssueTool(), "medium"),
]
for tool, expected_default in tools:
assert (
tool.get_default_thinking_mode() == expected_default
), f"{tool.__class__.__name__} should default to {expected_default}"
@pytest.mark.asyncio
async def test_thinking_mode_minimal(self):
"""Test minimal thinking mode with real provider resolution"""
import importlib
import os
# Save original environment
original_env = {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"),
}
try:
# Set up environment for OpenAI provider (which supports thinking mode)
os.environ["OPENAI_API_KEY"] = "sk-test-key-minimal-thinking-test-not-real"
os.environ["DEFAULT_MODEL"] = "o3-mini" # Use a model that supports thinking
# Clear other provider keys to isolate to OpenAI
for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]:
os.environ.pop(key, None)
# Reload config and clear registry
import config
importlib.reload(config)
from providers.registry import ModelProviderRegistry
ModelProviderRegistry._instance = None
tool = AnalyzeTool()
# This should attempt to use the real OpenAI provider
# Even with a fake API key, we can test the provider resolution logic
# The test will fail at the API call level, but we can verify the thinking mode logic
try:
result = await tool.execute(
{
"files": ["/absolute/path/test.py"],
"prompt": "What is this?",
"model": "o3-mini",
"thinking_mode": "minimal",
}
)
# If we get here, great! The provider resolution worked
# Check that thinking mode was properly handled
assert result is not None
except Exception as e:
# Expected: API call will fail with fake key, but we can check the error
# If we get a provider resolution error, that's what we're testing
error_msg = str(e)
# Should NOT be a mock-related error - should be a real API or key error
assert "MagicMock" not in error_msg
assert "'<' not supported between instances" not in error_msg
# Should be a real provider error (API key, network, etc.)
assert any(
phrase in error_msg
for phrase in ["API", "key", "authentication", "provider", "network", "connection"]
)
finally:
# Restore environment
for key, value in original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# Reload config and clear registry
importlib.reload(config)
ModelProviderRegistry._instance = None
@pytest.mark.asyncio
async def test_thinking_mode_low(self):
"""Test low thinking mode with real provider resolution"""
import importlib
import os
# Save original environment
original_env = {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"),
}
try:
# Set up environment for OpenAI provider (which supports thinking mode)
os.environ["OPENAI_API_KEY"] = "sk-test-key-low-thinking-test-not-real"
os.environ["DEFAULT_MODEL"] = "o3-mini"
# Clear other provider keys
for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]:
os.environ.pop(key, None)
# Reload config and clear registry
import config
importlib.reload(config)
from providers.registry import ModelProviderRegistry
ModelProviderRegistry._instance = None
tool = CodeReviewTool()
# Test with real provider resolution
try:
result = await tool.execute(
{
"files": ["/absolute/path/test.py"],
"thinking_mode": "low",
"prompt": "Test code review for validation purposes",
"model": "o3-mini",
}
)
# If we get here, provider resolution worked
assert result is not None
except Exception as e:
# Expected: API call will fail with fake key
error_msg = str(e)
# Should NOT be a mock-related error
assert "MagicMock" not in error_msg
assert "'<' not supported between instances" not in error_msg
# Should be a real provider error
assert any(
phrase in error_msg
for phrase in ["API", "key", "authentication", "provider", "network", "connection"]
)
finally:
# Restore environment
for key, value in original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# Reload config and clear registry
importlib.reload(config)
ModelProviderRegistry._instance = None
@pytest.mark.asyncio
async def test_thinking_mode_medium(self):
"""Test medium thinking mode (default for most tools) using real integration testing"""
import importlib
import os
# Save original environment
original_env = {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"),
}
try:
# Set up environment for OpenAI provider (which supports thinking mode)
os.environ["OPENAI_API_KEY"] = "sk-test-key-medium-thinking-test-not-real"
os.environ["DEFAULT_MODEL"] = "o3-mini"
# Clear other provider keys to isolate to OpenAI
for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]:
os.environ.pop(key, None)
# Reload config and clear registry
import config
importlib.reload(config)
from providers.registry import ModelProviderRegistry
ModelProviderRegistry._instance = None
tool = DebugIssueTool()
# Test with real provider resolution
try:
result = await tool.execute(
{
"prompt": "Test error",
"model": "o3-mini",
# Not specifying thinking_mode, should use default (medium)
}
)
# If we get here, provider resolution worked
assert result is not None
# Should be a valid debug response
assert len(result) == 1
except Exception as e:
# Expected: API call will fail with fake key
error_msg = str(e)
# Should NOT be a mock-related error
assert "MagicMock" not in error_msg
assert "'<' not supported between instances" not in error_msg
# Should be a real provider error
assert any(
phrase in error_msg
for phrase in ["API", "key", "authentication", "provider", "network", "connection"]
)
finally:
# Restore environment
for key, value in original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# Reload config and clear registry
importlib.reload(config)
ModelProviderRegistry._instance = None
@pytest.mark.asyncio
async def test_thinking_mode_high(self):
"""Test high thinking mode with real provider resolution"""
import importlib
import os
# Save original environment
original_env = {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"),
}
try:
# Set up environment for OpenAI provider (which supports thinking mode)
os.environ["OPENAI_API_KEY"] = "sk-test-key-high-thinking-test-not-real"
os.environ["DEFAULT_MODEL"] = "o3-mini"
# Clear other provider keys
for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]:
os.environ.pop(key, None)
# Reload config and clear registry
import config
importlib.reload(config)
from providers.registry import ModelProviderRegistry
ModelProviderRegistry._instance = None
tool = AnalyzeTool()
# Test with real provider resolution
try:
result = await tool.execute(
{
"files": ["/absolute/path/complex.py"],
"prompt": "Analyze architecture",
"thinking_mode": "high",
"model": "o3-mini",
}
)
# If we get here, provider resolution worked
assert result is not None
except Exception as e:
# Expected: API call will fail with fake key
error_msg = str(e)
# Should NOT be a mock-related error
assert "MagicMock" not in error_msg
assert "'<' not supported between instances" not in error_msg
# Should be a real provider error
assert any(
phrase in error_msg
for phrase in ["API", "key", "authentication", "provider", "network", "connection"]
)
finally:
# Restore environment
for key, value in original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# Reload config and clear registry
importlib.reload(config)
ModelProviderRegistry._instance = None
@pytest.mark.asyncio
async def test_thinking_mode_max(self):
"""Test max thinking mode (default for thinkdeep) using real integration testing"""
import importlib
import os
# Save original environment
original_env = {
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY"),
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL"),
"DEFAULT_THINKING_MODE_THINKDEEP": os.environ.get("DEFAULT_THINKING_MODE_THINKDEEP"),
}
try:
# Set up environment for OpenAI provider (which supports thinking mode)
os.environ["OPENAI_API_KEY"] = "sk-test-key-max-thinking-test-not-real"
os.environ["DEFAULT_MODEL"] = "o3-mini"
os.environ["DEFAULT_THINKING_MODE_THINKDEEP"] = "high" # Set default to high for thinkdeep
# Clear other provider keys to isolate to OpenAI
for key in ["GEMINI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY"]:
os.environ.pop(key, None)
# Reload config and clear registry
import config
importlib.reload(config)
from providers.registry import ModelProviderRegistry
ModelProviderRegistry._instance = None
tool = ThinkDeepTool()
# Test with real provider resolution
try:
result = await tool.execute(
{
"prompt": "Initial analysis",
"model": "o3-mini",
# Not specifying thinking_mode, should use default (high)
}
)
# If we get here, provider resolution worked
assert result is not None
# Should be a valid thinkdeep response
assert len(result) == 1
except Exception as e:
# Expected: API call will fail with fake key
error_msg = str(e)
# Should NOT be a mock-related error
assert "MagicMock" not in error_msg
assert "'<' not supported between instances" not in error_msg
# Should be a real provider error
assert any(
phrase in error_msg
for phrase in ["API", "key", "authentication", "provider", "network", "connection"]
)
finally:
# Restore environment
for key, value in original_env.items():
if value is not None:
os.environ[key] = value
else:
os.environ.pop(key, None)
# Reload config and clear registry
importlib.reload(config)
ModelProviderRegistry._instance = None
def test_thinking_budget_mapping(self):
"""Test that thinking modes map to correct budget values"""
from tools.shared.base_tool import BaseTool
# Create a simple test tool
class TestTool(BaseTool):
def get_name(self):
return "test"
def get_description(self):
return "test"
def get_input_schema(self):
return {}
def get_system_prompt(self):
return "test"
def get_request_model(self):
return None
async def prepare_prompt(self, request):
return "test"
# Test dynamic budget calculation for Flash 2.5
from providers.gemini import GeminiModelProvider
provider = GeminiModelProvider(api_key="test-key")
flash_model = "gemini-2.5-flash"
flash_max_tokens = 24576
expected_budgets = {
"minimal": int(flash_max_tokens * 0.005), # 123
"low": int(flash_max_tokens * 0.08), # 1966
"medium": int(flash_max_tokens * 0.33), # 8110
"high": int(flash_max_tokens * 0.67), # 16465
"max": int(flash_max_tokens * 1.0), # 24576
}
# Check each mode using the helper method
for mode, expected_budget in expected_budgets.items():
actual_budget = provider.get_thinking_budget(flash_model, mode)
assert actual_budget == expected_budget, f"Mode {mode}: expected {expected_budget}, got {actual_budget}"