Files
my-pal-mcp-server/docs/adding_providers.md
2025-10-02 11:35:29 +04:00

312 lines
11 KiB
Markdown

# Adding a New Provider
This guide explains how to add support for a new AI model provider to the Zen MCP Server. The provider system is designed to be extensible and follows a simple pattern.
## Overview
Each provider:
- Inherits from `ModelProvider` (base class) or `OpenAICompatibleProvider` (for OpenAI-compatible APIs)
- Defines supported models using `ModelCapabilities` objects
- Implements a few core abstract methods
- Gets registered automatically via environment variables
## Choose Your Implementation Path
**Option A: Full Provider (`ModelProvider`)**
- For APIs with unique features or custom authentication
- Complete control over API calls and response handling
- Required methods: `generate_content()`, `get_capabilities()`, `validate_model_name()`, `get_provider_type()` (override `count_tokens()` only when you have a provider-accurate tokenizer)
**Option B: OpenAI-Compatible (`OpenAICompatibleProvider`)**
- For APIs that follow OpenAI's chat completion format
- Only need to define: model configurations, capabilities, and validation
- Inherits all API handling automatically
⚠️ **Important**: If using aliases (like `"gpt"``"gpt-4"`), override `generate_content()` to resolve them before API calls.
## Step-by-Step Guide
### 1. Add Provider Type
Add your provider to the `ProviderType` enum in `providers/shared/provider_type.py`:
```python
class ProviderType(Enum):
GOOGLE = "google"
OPENAI = "openai"
EXAMPLE = "example" # Add this
```
### 2. Create the Provider Implementation
#### Option A: Full Provider (Native Implementation)
Create `providers/example.py`:
```python
"""Example model provider implementation."""
import logging
from typing import Optional
from .base import ModelProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
logger = logging.getLogger(__name__)
class ExampleModelProvider(ModelProvider):
"""Example model provider implementation."""
# Define models using ModelCapabilities objects (like Gemini provider)
MODEL_CAPABILITIES = {
"example-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-large",
friendly_name="Example Large",
context_window=100_000,
max_output_tokens=50_000,
supports_extended_thinking=False,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
description="Large model for complex tasks",
aliases=["large", "big"],
),
"example-small": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-small",
friendly_name="Example Small",
context_window=32_000,
max_output_tokens=16_000,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
description="Fast model for simple tasks",
aliases=["small", "fast"],
),
}
def __init__(self, api_key: str, **kwargs):
super().__init__(api_key, **kwargs)
# Initialize your API client here
def get_capabilities(self, model_name: str) -> ModelCapabilities:
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported model: {model_name}")
# Apply restrictions if needed
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.EXAMPLE, resolved_name, model_name):
raise ValueError(f"Model '{model_name}' is not allowed.")
return self.MODEL_CAPABILITIES[resolved_name]
def generate_content(self, prompt: str, model_name: str, system_prompt: Optional[str] = None,
temperature: float = 0.7, max_output_tokens: Optional[int] = None, **kwargs) -> ModelResponse:
resolved_name = self._resolve_model_name(model_name)
# Your API call logic here
# response = your_api_client.generate(...)
return ModelResponse(
content="Generated response", # From your API
usage={"input_tokens": 100, "output_tokens": 50, "total_tokens": 150},
model_name=resolved_name,
friendly_name="Example",
provider=ProviderType.EXAMPLE,
)
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES
```
`ModelProvider.count_tokens()` uses a simple 4-characters-per-token estimate so
providers work out of the box. Override the method only when you can call into
the provider's real tokenizer (for example, the OpenAI-compatible base class
already integrates `tiktoken`).
#### Option B: OpenAI-Compatible Provider (Simplified)
For OpenAI-compatible APIs:
```python
"""Example OpenAI-compatible provider."""
from typing import Optional
from .openai_compatible import OpenAICompatibleProvider
from .shared import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
class ExampleProvider(OpenAICompatibleProvider):
"""Example OpenAI-compatible provider."""
FRIENDLY_NAME = "Example"
# Define models using ModelCapabilities (consistent with other providers)
MODEL_CAPABILITIES = {
"example-model-large": ModelCapabilities(
provider=ProviderType.EXAMPLE,
model_name="example-model-large",
friendly_name="Example Large",
context_window=128_000,
max_output_tokens=64_000,
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
aliases=["large", "big"],
),
}
def __init__(self, api_key: str, **kwargs):
kwargs.setdefault("base_url", "https://api.example.com/v1")
super().__init__(api_key, **kwargs)
def get_capabilities(self, model_name: str) -> ModelCapabilities:
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.MODEL_CAPABILITIES:
raise ValueError(f"Unsupported model: {model_name}")
return self.MODEL_CAPABILITIES[resolved_name]
def get_provider_type(self) -> ProviderType:
return ProviderType.EXAMPLE
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES
def generate_content(self, prompt: str, model_name: str, **kwargs) -> ModelResponse:
# IMPORTANT: Resolve aliases before API call
resolved_model_name = self._resolve_model_name(model_name)
return super().generate_content(prompt=prompt, model_name=resolved_model_name, **kwargs)
```
### 3. Register Your Provider
Add environment variable mapping in `providers/registry.py`:
```python
# In _get_api_key_for_provider (providers/registry.py), add:
ProviderType.EXAMPLE: "EXAMPLE_API_KEY",
```
Add to `server.py`:
1. **Import your provider**:
```python
from providers.example import ExampleModelProvider
```
2. **Add to `configure_providers()` function**:
```python
# Check for Example API key
example_key = os.getenv("EXAMPLE_API_KEY")
if example_key:
ModelProviderRegistry.register_provider(ProviderType.EXAMPLE, ExampleModelProvider)
logger.info("Example API key found - Example models available")
```
3. **Add to provider priority** (edit `ModelProviderRegistry.PROVIDER_PRIORITY_ORDER` in `providers/registry.py`): insert your provider in the list at the appropriate point in the cascade of native → custom → catch-all providers.
### 4. Environment Configuration
Add to your `.env` file:
```bash
# Your provider's API key
EXAMPLE_API_KEY=your_api_key_here
# Optional: Disable specific tools
DISABLED_TOOLS=debug,tracer
```
**Note**: The `description` field in `ModelCapabilities` helps Claude choose the best model in auto mode.
### 5. Test Your Provider
Create basic tests to verify your implementation:
```python
# Test model validation
provider = ExampleModelProvider("test-key")
assert provider.validate_model_name("large") == True
assert provider.validate_model_name("unknown") == False
# Test capabilities
caps = provider.get_capabilities("large")
assert caps.context_window > 0
assert caps.provider == ProviderType.EXAMPLE
```
## Key Concepts
### Provider Priority
When a user requests a model, providers are checked in priority order:
1. **Native providers** (Gemini, OpenAI, Example) - handle their specific models
2. **Custom provider** - handles local/self-hosted models
3. **OpenRouter** - catch-all for everything else
### Model Validation
Your `validate_model_name()` should **only** return `True` for models you explicitly support:
```python
def validate_model_name(self, model_name: str) -> bool:
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.MODEL_CAPABILITIES # Be specific!
```
### Model Aliases
The base class handles alias resolution automatically via the `aliases` field in `ModelCapabilities`.
## Important Notes
### Alias Resolution in OpenAI-Compatible Providers
If using `OpenAICompatibleProvider` with aliases, **you must override `generate_content()`** to resolve aliases before API calls:
```python
def generate_content(self, prompt: str, model_name: str, **kwargs) -> ModelResponse:
# Resolve alias before API call
resolved_model_name = self._resolve_model_name(model_name)
return super().generate_content(prompt=prompt, model_name=resolved_model_name, **kwargs)
```
Without this, API calls with aliases like `"large"` will fail because your API doesn't recognize the alias.
## Best Practices
- **Be specific in model validation** - only accept models you actually support
- **Use ModelCapabilities objects** consistently (like Gemini provider)
- **Include descriptive aliases** for better user experience
- **Add error handling** and logging for debugging
- **Test with real API calls** to verify everything works
- **Follow the existing patterns** in `providers/gemini.py` and `providers/custom.py`
## Quick Checklist
- [ ] Added to `ProviderType` enum in `providers/shared/provider_type.py`
- [ ] Created provider class with all required methods
- [ ] Added API key mapping in `providers/registry.py`
- [ ] Added to provider priority order in `registry.py`
- [ ] Imported and registered in `server.py`
- [ ] Basic tests verify model validation and capabilities
- [ ] Tested with real API calls
## Examples
See existing implementations:
- **Full provider**: `providers/gemini.py`
- **OpenAI-compatible**: `providers/custom.py`
- **Base classes**: `providers/base.py`