Major enhancements for Claude Code integration: Temperature Optimization: - Chat: 0.5 (balanced accuracy/creativity for development discussions) - Code Analysis: 0.2 (high precision for code reviews and debugging) Enhanced Developer Context: - Rewritten system prompt focusing on Claude Code augmentation - Emphasizes precision, best practices, and actionable solutions - Positions Gemini as an extension for large context tasks Claude Code-Centric Documentation: - README completely rewritten for Claude Code users - Clear configuration instructions with file paths - Practical examples for common development scenarios - Quick start guide with natural language usage Key improvements: - Lower temperatures for more accurate, deterministic responses - Developer-first approach in all interactions - Clear positioning as Claude's extended context handler - Comprehensive setup guide for Claude Desktop integration The server is now fully optimized to act as a specialized developer assistant that seamlessly extends Claude Code's capabilities. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
368 lines
14 KiB
Python
Executable File
368 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
Gemini MCP Server - Model Context Protocol server for Google Gemini
|
|
Enhanced for large-scale code analysis with 1M token context window
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
import asyncio
|
|
from typing import Optional, Dict, Any, List, Union
|
|
from pathlib import Path
|
|
from mcp.server.models import InitializationOptions
|
|
from mcp.server import Server, NotificationOptions
|
|
from mcp.server.stdio import stdio_server
|
|
from mcp.types import TextContent, Tool
|
|
from pydantic import BaseModel, Field
|
|
import google.generativeai as genai
|
|
|
|
|
|
# Default to Gemini 2.5 Pro Preview with maximum context
|
|
DEFAULT_MODEL = "gemini-2.5-pro-preview-06-05"
|
|
MAX_CONTEXT_TOKENS = 1000000 # 1M tokens
|
|
|
|
# Developer-focused system prompt for Claude Code usage
|
|
DEVELOPER_SYSTEM_PROMPT = """You are an expert software developer assistant working alongside Claude Code. Your role is to extend Claude's capabilities when handling large codebases or complex analysis tasks.
|
|
|
|
Core competencies:
|
|
- Deep understanding of software architecture and design patterns
|
|
- Expert-level debugging and root cause analysis
|
|
- Performance optimization and scalability considerations
|
|
- Security best practices and vulnerability identification
|
|
- Clean code principles and refactoring strategies
|
|
- Comprehensive testing approaches (unit, integration, e2e)
|
|
- Modern development practices (CI/CD, DevOps, cloud-native)
|
|
- Cross-platform and cross-language expertise
|
|
|
|
Your approach:
|
|
- Be precise and technical, avoiding unnecessary explanations
|
|
- Provide actionable, concrete solutions with code examples
|
|
- Consider edge cases and potential issues proactively
|
|
- Focus on maintainability, readability, and long-term sustainability
|
|
- Suggest modern, idiomatic solutions for the given language/framework
|
|
- When reviewing code, prioritize critical issues first
|
|
- Always validate your suggestions against best practices
|
|
|
|
Remember: You're augmenting Claude Code's capabilities, especially for tasks requiring extensive context or deep analysis that might exceed Claude's token limits."""
|
|
|
|
|
|
class GeminiChatRequest(BaseModel):
|
|
"""Request model for Gemini chat"""
|
|
prompt: str = Field(..., description="The prompt to send to Gemini")
|
|
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
|
|
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
|
|
temperature: Optional[float] = Field(0.5, description="Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)")
|
|
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
|
|
|
|
|
|
class CodeAnalysisRequest(BaseModel):
|
|
"""Request model for code analysis"""
|
|
files: Optional[List[str]] = Field(None, description="List of file paths to analyze")
|
|
code: Optional[str] = Field(None, description="Direct code content to analyze")
|
|
question: str = Field(..., description="Question or analysis request about the code")
|
|
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
|
|
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
|
|
temperature: Optional[float] = Field(0.2, description="Temperature for code analysis (0-1, default 0.2 for high accuracy)")
|
|
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
|
|
|
|
|
|
# Create the MCP server instance
|
|
server = Server("gemini-server")
|
|
|
|
|
|
# Configure Gemini API
|
|
def configure_gemini():
|
|
"""Configure the Gemini API with API key from environment"""
|
|
api_key = os.getenv("GEMINI_API_KEY")
|
|
if not api_key:
|
|
raise ValueError("GEMINI_API_KEY environment variable is not set")
|
|
genai.configure(api_key=api_key)
|
|
|
|
|
|
def read_file_content(file_path: str) -> str:
|
|
"""Read content from a file with error handling"""
|
|
try:
|
|
path = Path(file_path)
|
|
if not path.exists():
|
|
return f"Error: File not found: {file_path}"
|
|
if not path.is_file():
|
|
return f"Error: Not a file: {file_path}"
|
|
|
|
# Read the file
|
|
with open(path, 'r', encoding='utf-8') as f:
|
|
content = f.read()
|
|
|
|
return f"=== File: {file_path} ===\n{content}\n"
|
|
except Exception as e:
|
|
return f"Error reading {file_path}: {str(e)}"
|
|
|
|
|
|
def prepare_code_context(files: Optional[List[str]], code: Optional[str]) -> str:
|
|
"""Prepare code context from files and/or direct code"""
|
|
context_parts = []
|
|
|
|
# Add file contents
|
|
if files:
|
|
for file_path in files:
|
|
context_parts.append(read_file_content(file_path))
|
|
|
|
# Add direct code
|
|
if code:
|
|
context_parts.append("=== Direct Code ===\n" + code + "\n")
|
|
|
|
return "\n".join(context_parts)
|
|
|
|
|
|
@server.list_tools()
|
|
async def handle_list_tools() -> List[Tool]:
|
|
"""List all available tools"""
|
|
return [
|
|
Tool(
|
|
name="chat",
|
|
description="Chat with Gemini (optimized for 2.5 Pro with 1M context)",
|
|
inputSchema={
|
|
"type": "object",
|
|
"properties": {
|
|
"prompt": {
|
|
"type": "string",
|
|
"description": "The prompt to send to Gemini"
|
|
},
|
|
"system_prompt": {
|
|
"type": "string",
|
|
"description": "Optional system prompt for context"
|
|
},
|
|
"max_tokens": {
|
|
"type": "integer",
|
|
"description": "Maximum number of tokens in response",
|
|
"default": 8192
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)",
|
|
"default": 0.5,
|
|
"minimum": 0,
|
|
"maximum": 1
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
|
|
"default": DEFAULT_MODEL
|
|
}
|
|
},
|
|
"required": ["prompt"]
|
|
}
|
|
),
|
|
Tool(
|
|
name="analyze_code",
|
|
description="Analyze code files or snippets with Gemini's 1M context window",
|
|
inputSchema={
|
|
"type": "object",
|
|
"properties": {
|
|
"files": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "List of file paths to analyze"
|
|
},
|
|
"code": {
|
|
"type": "string",
|
|
"description": "Direct code content to analyze (alternative to files)"
|
|
},
|
|
"question": {
|
|
"type": "string",
|
|
"description": "Question or analysis request about the code"
|
|
},
|
|
"system_prompt": {
|
|
"type": "string",
|
|
"description": "Optional system prompt for context"
|
|
},
|
|
"max_tokens": {
|
|
"type": "integer",
|
|
"description": "Maximum number of tokens in response",
|
|
"default": 8192
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Temperature for code analysis (0-1, default 0.2 for high accuracy)",
|
|
"default": 0.2,
|
|
"minimum": 0,
|
|
"maximum": 1
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
|
|
"default": DEFAULT_MODEL
|
|
}
|
|
},
|
|
"required": ["question"]
|
|
}
|
|
),
|
|
Tool(
|
|
name="list_models",
|
|
description="List available Gemini models",
|
|
inputSchema={
|
|
"type": "object",
|
|
"properties": {}
|
|
}
|
|
)
|
|
]
|
|
|
|
|
|
@server.call_tool()
|
|
async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]:
|
|
"""Handle tool execution requests"""
|
|
|
|
if name == "chat":
|
|
# Validate request
|
|
request = GeminiChatRequest(**arguments)
|
|
|
|
try:
|
|
# Use the specified model with optimized settings
|
|
model = genai.GenerativeModel(
|
|
model_name=request.model,
|
|
generation_config={
|
|
"temperature": request.temperature,
|
|
"max_output_tokens": request.max_tokens,
|
|
"candidate_count": 1,
|
|
}
|
|
)
|
|
|
|
# Prepare the prompt with automatic developer context if no system prompt provided
|
|
if request.system_prompt:
|
|
full_prompt = f"{request.system_prompt}\n\n{request.prompt}"
|
|
else:
|
|
# Auto-inject developer system prompt for better Claude Code integration
|
|
full_prompt = f"{DEVELOPER_SYSTEM_PROMPT}\n\n{request.prompt}"
|
|
|
|
# Generate response
|
|
response = model.generate_content(full_prompt)
|
|
|
|
# Handle response based on finish reason
|
|
if response.candidates and response.candidates[0].content.parts:
|
|
text = response.candidates[0].content.parts[0].text
|
|
else:
|
|
# Handle safety filters or other issues
|
|
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
|
|
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
|
|
|
|
return [TextContent(
|
|
type="text",
|
|
text=text
|
|
)]
|
|
|
|
except Exception as e:
|
|
return [TextContent(
|
|
type="text",
|
|
text=f"Error calling Gemini API: {str(e)}"
|
|
)]
|
|
|
|
elif name == "analyze_code":
|
|
# Validate request
|
|
request = CodeAnalysisRequest(**arguments)
|
|
|
|
# Check that we have either files or code
|
|
if not request.files and not request.code:
|
|
return [TextContent(
|
|
type="text",
|
|
text="Error: Must provide either 'files' or 'code' parameter"
|
|
)]
|
|
|
|
try:
|
|
# Prepare code context
|
|
code_context = prepare_code_context(request.files, request.code)
|
|
|
|
# Count approximate tokens (rough estimate: 1 token ≈ 4 characters)
|
|
estimated_tokens = len(code_context) // 4
|
|
if estimated_tokens > MAX_CONTEXT_TOKENS:
|
|
return [TextContent(
|
|
type="text",
|
|
text=f"Error: Code context too large (~{estimated_tokens:,} tokens). Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
|
)]
|
|
|
|
# Use the specified model with optimized settings for code analysis
|
|
model = genai.GenerativeModel(
|
|
model_name=request.model,
|
|
generation_config={
|
|
"temperature": request.temperature,
|
|
"max_output_tokens": request.max_tokens,
|
|
"candidate_count": 1,
|
|
}
|
|
)
|
|
|
|
# Prepare the full prompt with enhanced developer context
|
|
system_prompt = request.system_prompt or DEVELOPER_SYSTEM_PROMPT
|
|
full_prompt = f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\nQuestion/Request: {request.question}"
|
|
|
|
# Generate response
|
|
response = model.generate_content(full_prompt)
|
|
|
|
# Handle response
|
|
if response.candidates and response.candidates[0].content.parts:
|
|
text = response.candidates[0].content.parts[0].text
|
|
else:
|
|
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
|
|
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
|
|
|
|
return [TextContent(
|
|
type="text",
|
|
text=text
|
|
)]
|
|
|
|
except Exception as e:
|
|
return [TextContent(
|
|
type="text",
|
|
text=f"Error analyzing code: {str(e)}"
|
|
)]
|
|
|
|
elif name == "list_models":
|
|
try:
|
|
# List available models
|
|
models = []
|
|
for model in genai.list_models():
|
|
if 'generateContent' in model.supported_generation_methods:
|
|
models.append({
|
|
"name": model.name,
|
|
"display_name": model.display_name,
|
|
"description": model.description,
|
|
"is_default": model.name == DEFAULT_MODEL
|
|
})
|
|
|
|
return [TextContent(
|
|
type="text",
|
|
text=json.dumps(models, indent=2)
|
|
)]
|
|
|
|
except Exception as e:
|
|
return [TextContent(
|
|
type="text",
|
|
text=f"Error listing models: {str(e)}"
|
|
)]
|
|
|
|
else:
|
|
return [TextContent(
|
|
type="text",
|
|
text=f"Unknown tool: {name}"
|
|
)]
|
|
|
|
|
|
async def main():
|
|
"""Main entry point for the server"""
|
|
# Configure Gemini API
|
|
configure_gemini()
|
|
|
|
# Run the server using stdio transport
|
|
async with stdio_server() as (read_stream, write_stream):
|
|
await server.run(
|
|
read_stream,
|
|
write_stream,
|
|
InitializationOptions(
|
|
server_name="gemini",
|
|
server_version="2.0.0",
|
|
capabilities={
|
|
"tools": {}
|
|
}
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |