#!/usr/bin/env python3 """ Gemini MCP Server - Model Context Protocol server for Google Gemini Enhanced for large-scale code analysis with 1M token context window """ import os import json import asyncio from typing import Optional, Dict, Any, List, Union from pathlib import Path from mcp.server.models import InitializationOptions from mcp.server import Server, NotificationOptions from mcp.server.stdio import stdio_server from mcp.types import TextContent, Tool from pydantic import BaseModel, Field import google.generativeai as genai # Default to Gemini 2.5 Pro Preview with maximum context DEFAULT_MODEL = "gemini-2.5-pro-preview-06-05" MAX_CONTEXT_TOKENS = 1000000 # 1M tokens # Developer-focused system prompt for Claude Code usage DEVELOPER_SYSTEM_PROMPT = """You are an expert software developer assistant working alongside Claude Code. Your role is to extend Claude's capabilities when handling large codebases or complex analysis tasks. Core competencies: - Deep understanding of software architecture and design patterns - Expert-level debugging and root cause analysis - Performance optimization and scalability considerations - Security best practices and vulnerability identification - Clean code principles and refactoring strategies - Comprehensive testing approaches (unit, integration, e2e) - Modern development practices (CI/CD, DevOps, cloud-native) - Cross-platform and cross-language expertise Your approach: - Be precise and technical, avoiding unnecessary explanations - Provide actionable, concrete solutions with code examples - Consider edge cases and potential issues proactively - Focus on maintainability, readability, and long-term sustainability - Suggest modern, idiomatic solutions for the given language/framework - When reviewing code, prioritize critical issues first - Always validate your suggestions against best practices Remember: You're augmenting Claude Code's capabilities, especially for tasks requiring extensive context or deep analysis that might exceed Claude's token limits.""" class GeminiChatRequest(BaseModel): """Request model for Gemini chat""" prompt: str = Field(..., description="The prompt to send to Gemini") system_prompt: Optional[str] = Field(None, description="Optional system prompt for context") max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response") temperature: Optional[float] = Field(0.5, description="Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)") model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})") class CodeAnalysisRequest(BaseModel): """Request model for code analysis""" files: Optional[List[str]] = Field(None, description="List of file paths to analyze") code: Optional[str] = Field(None, description="Direct code content to analyze") question: str = Field(..., description="Question or analysis request about the code") system_prompt: Optional[str] = Field(None, description="Optional system prompt for context") max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response") temperature: Optional[float] = Field(0.2, description="Temperature for code analysis (0-1, default 0.2 for high accuracy)") model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})") # Create the MCP server instance server = Server("gemini-server") # Configure Gemini API def configure_gemini(): """Configure the Gemini API with API key from environment""" api_key = os.getenv("GEMINI_API_KEY") if not api_key: raise ValueError("GEMINI_API_KEY environment variable is not set") genai.configure(api_key=api_key) def read_file_content(file_path: str) -> str: """Read content from a file with error handling""" try: path = Path(file_path) if not path.exists(): return f"Error: File not found: {file_path}" if not path.is_file(): return f"Error: Not a file: {file_path}" # Read the file with open(path, 'r', encoding='utf-8') as f: content = f.read() return f"=== File: {file_path} ===\n{content}\n" except Exception as e: return f"Error reading {file_path}: {str(e)}" def prepare_code_context(files: Optional[List[str]], code: Optional[str]) -> str: """Prepare code context from files and/or direct code""" context_parts = [] # Add file contents if files: for file_path in files: context_parts.append(read_file_content(file_path)) # Add direct code if code: context_parts.append("=== Direct Code ===\n" + code + "\n") return "\n".join(context_parts) @server.list_tools() async def handle_list_tools() -> List[Tool]: """List all available tools""" return [ Tool( name="chat", description="Chat with Gemini (optimized for 2.5 Pro with 1M context)", inputSchema={ "type": "object", "properties": { "prompt": { "type": "string", "description": "The prompt to send to Gemini" }, "system_prompt": { "type": "string", "description": "Optional system prompt for context" }, "max_tokens": { "type": "integer", "description": "Maximum number of tokens in response", "default": 8192 }, "temperature": { "type": "number", "description": "Temperature for response randomness (0-1, default 0.5 for balanced accuracy/creativity)", "default": 0.5, "minimum": 0, "maximum": 1 }, "model": { "type": "string", "description": f"Model to use (defaults to {DEFAULT_MODEL})", "default": DEFAULT_MODEL } }, "required": ["prompt"] } ), Tool( name="analyze_code", description="Analyze code files or snippets with Gemini's 1M context window", inputSchema={ "type": "object", "properties": { "files": { "type": "array", "items": {"type": "string"}, "description": "List of file paths to analyze" }, "code": { "type": "string", "description": "Direct code content to analyze (alternative to files)" }, "question": { "type": "string", "description": "Question or analysis request about the code" }, "system_prompt": { "type": "string", "description": "Optional system prompt for context" }, "max_tokens": { "type": "integer", "description": "Maximum number of tokens in response", "default": 8192 }, "temperature": { "type": "number", "description": "Temperature for code analysis (0-1, default 0.2 for high accuracy)", "default": 0.2, "minimum": 0, "maximum": 1 }, "model": { "type": "string", "description": f"Model to use (defaults to {DEFAULT_MODEL})", "default": DEFAULT_MODEL } }, "required": ["question"] } ), Tool( name="list_models", description="List available Gemini models", inputSchema={ "type": "object", "properties": {} } ) ] @server.call_tool() async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]: """Handle tool execution requests""" if name == "chat": # Validate request request = GeminiChatRequest(**arguments) try: # Use the specified model with optimized settings model = genai.GenerativeModel( model_name=request.model, generation_config={ "temperature": request.temperature, "max_output_tokens": request.max_tokens, "candidate_count": 1, } ) # Prepare the prompt with automatic developer context if no system prompt provided if request.system_prompt: full_prompt = f"{request.system_prompt}\n\n{request.prompt}" else: # Auto-inject developer system prompt for better Claude Code integration full_prompt = f"{DEVELOPER_SYSTEM_PROMPT}\n\n{request.prompt}" # Generate response response = model.generate_content(full_prompt) # Handle response based on finish reason if response.candidates and response.candidates[0].content.parts: text = response.candidates[0].content.parts[0].text else: # Handle safety filters or other issues finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown" text = f"Response blocked or incomplete. Finish reason: {finish_reason}" return [TextContent( type="text", text=text )] except Exception as e: return [TextContent( type="text", text=f"Error calling Gemini API: {str(e)}" )] elif name == "analyze_code": # Validate request request = CodeAnalysisRequest(**arguments) # Check that we have either files or code if not request.files and not request.code: return [TextContent( type="text", text="Error: Must provide either 'files' or 'code' parameter" )] try: # Prepare code context code_context = prepare_code_context(request.files, request.code) # Count approximate tokens (rough estimate: 1 token ≈ 4 characters) estimated_tokens = len(code_context) // 4 if estimated_tokens > MAX_CONTEXT_TOKENS: return [TextContent( type="text", text=f"Error: Code context too large (~{estimated_tokens:,} tokens). Maximum is {MAX_CONTEXT_TOKENS:,} tokens." )] # Use the specified model with optimized settings for code analysis model = genai.GenerativeModel( model_name=request.model, generation_config={ "temperature": request.temperature, "max_output_tokens": request.max_tokens, "candidate_count": 1, } ) # Prepare the full prompt with enhanced developer context system_prompt = request.system_prompt or DEVELOPER_SYSTEM_PROMPT full_prompt = f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\nQuestion/Request: {request.question}" # Generate response response = model.generate_content(full_prompt) # Handle response if response.candidates and response.candidates[0].content.parts: text = response.candidates[0].content.parts[0].text else: finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown" text = f"Response blocked or incomplete. Finish reason: {finish_reason}" return [TextContent( type="text", text=text )] except Exception as e: return [TextContent( type="text", text=f"Error analyzing code: {str(e)}" )] elif name == "list_models": try: # List available models models = [] for model in genai.list_models(): if 'generateContent' in model.supported_generation_methods: models.append({ "name": model.name, "display_name": model.display_name, "description": model.description, "is_default": model.name == DEFAULT_MODEL }) return [TextContent( type="text", text=json.dumps(models, indent=2) )] except Exception as e: return [TextContent( type="text", text=f"Error listing models: {str(e)}" )] else: return [TextContent( type="text", text=f"Unknown tool: {name}" )] async def main(): """Main entry point for the server""" # Configure Gemini API configure_gemini() # Run the server using stdio transport async with stdio_server() as (read_stream, write_stream): await server.run( read_stream, write_stream, InitializationOptions( server_name="gemini", server_version="2.0.0", capabilities={ "tools": {} } ) ) if __name__ == "__main__": asyncio.run(main())