Schema now lists all models including locally available models

New tool to list all models `listmodels`
Integration test to for all the different combinations of API keys
Tweaks to codereview prompt for a better quality input from Claude
Fixed missing 'low' severity in codereview
This commit is contained in:
Fahad
2025-06-16 19:07:35 +04:00
parent cb17582d8f
commit 70b64adff3
10 changed files with 822 additions and 24 deletions

View File

@@ -268,6 +268,7 @@ Just ask Claude naturally:
- **Code needs refactoring?** → `refactor` (intelligent refactoring with decomposition focus)
- **Need call-flow analysis?** → `tracer` (generates prompts for execution tracing and dependency mapping)
- **Need comprehensive tests?** → `testgen` (generates test suites with edge cases)
- **Which models are available?** → `listmodels` (shows all configured providers and models)
- **Server info?** → `version` (version and configuration details)
**Auto Mode:** When `DEFAULT_MODEL=auto`, Claude automatically picks the best model for each task. You can override with: "Use flash for quick analysis" or "Use o3 to debug this".
@@ -291,7 +292,8 @@ Just ask Claude naturally:
7. [`refactor`](#7-refactor---intelligent-code-refactoring) - Code refactoring with decomposition focus
8. [`tracer`](#8-tracer---static-code-analysis-prompt-generator) - Static code analysis prompt generator for call-flow mapping
9. [`testgen`](#9-testgen---comprehensive-test-generation) - Comprehensive test generation with edge case coverage
10. [`version`](#10-version---server-information) - Get server version and configuration
10. [`listmodels`](#10-listmodels---list-available-models) - Display all available AI models organized by provider
11. [`version`](#11-version---server-information) - Get server version and configuration
### 1. `chat` - General Development Chat & Collaborative Thinking
**Your thinking partner - bounce ideas, get second opinions, brainstorm collaboratively**
@@ -575,7 +577,13 @@ suites that cover realistic failure scenarios and integration points that shorte
- Specific code coverage - target specific functions/classes rather than testing everything
- **Image support**: Test UI components, analyze visual requirements: `"Generate tests for this login form using the UI mockup screenshot"`
### 10. `version` - Server Information
### 10. `listmodels` - List Available Models
```
"Use zen to list available models"
```
Shows all configured providers, available models with aliases, and context windows.
### 11. `version` - Server Information
```
"Get zen to show its version"
```

View File

@@ -14,7 +14,7 @@ import os
# These values are used in server responses and for tracking releases
# IMPORTANT: This is the single source of truth for version and author info
# Semantic versioning: MAJOR.MINOR.PATCH
__version__ = "4.8.1"
__version__ = "4.8.2"
# Last update date in ISO format
__updated__ = "2025-06-16"
# Primary maintainer

View File

@@ -51,6 +51,7 @@ from tools import (
ChatTool,
CodeReviewTool,
DebugIssueTool,
ListModelsTool,
Precommit,
RefactorTool,
TestGenerationTool,
@@ -156,6 +157,7 @@ TOOLS = {
"debug": DebugIssueTool(), # Root cause analysis and debugging assistance
"analyze": AnalyzeTool(), # General-purpose file and code analysis
"chat": ChatTool(), # Interactive development chat and brainstorming
"listmodels": ListModelsTool(), # List all available AI models by provider
"precommit": Precommit(), # Pre-commit validation of git changes
"testgen": TestGenerationTool(), # Comprehensive test generation with edge case coverage
"refactor": RefactorTool(), # Intelligent code refactoring suggestions with precise line references
@@ -209,6 +211,11 @@ PROMPT_TEMPLATES = {
"description": "Trace code execution paths",
"template": "Generate tracer analysis with {model}",
},
"listmodels": {
"name": "listmodels",
"description": "List available AI models",
"template": "List all available models",
},
}
@@ -412,6 +419,10 @@ async def handle_list_tools() -> list[Tool]:
]
)
# Log cache efficiency info
if os.getenv("OPENROUTER_API_KEY") and os.getenv("OPENROUTER_API_KEY") != "your_openrouter_api_key_here":
logger.debug("OpenRouter registry cache used efficiently across all tool schemas")
logger.debug(f"Returning {len(tools)} tools to MCP client")
return tools
@@ -821,14 +832,14 @@ async def handle_version() -> list[TextContent]:
configured_providers = []
available_models = ModelProviderRegistry.get_available_models(respect_restrictions=True)
# Group models by provider
models_by_provider = {}
for model_name, provider_type in available_models.items():
if provider_type not in models_by_provider:
models_by_provider[provider_type] = []
models_by_provider[provider_type].append(model_name)
# Format provider information with actual available models
if ProviderType.GOOGLE in models_by_provider:
gemini_models = ", ".join(sorted(models_by_provider[ProviderType.GOOGLE]))

154
tests/test_listmodels.py Normal file
View File

@@ -0,0 +1,154 @@
"""Tests for the ListModels tool"""
import json
import os
from unittest.mock import patch
import pytest
from mcp.types import TextContent
from tools.listmodels import ListModelsTool
class TestListModelsTool:
"""Test the ListModels tool functionality"""
@pytest.fixture
def tool(self):
"""Create a ListModelsTool instance"""
return ListModelsTool()
def test_tool_metadata(self, tool):
"""Test tool has correct metadata"""
assert tool.name == "listmodels"
assert "LIST AVAILABLE MODELS" in tool.description
assert tool.get_request_model().__name__ == "ToolRequest"
@pytest.mark.asyncio
async def test_execute_with_no_providers(self, tool):
"""Test listing models with no providers configured"""
with patch.dict(os.environ, {}, clear=True):
# Set auto mode
os.environ["DEFAULT_MODEL"] = "auto"
result = await tool.execute({})
assert len(result) == 1
assert isinstance(result[0], TextContent)
# Parse JSON response
response = json.loads(result[0].text)
assert response["status"] == "success"
content = response["content"]
# Check that providers show as not configured
assert "Google Gemini ❌" in content
assert "OpenAI ❌" in content
assert "X.AI (Grok) ❌" in content
assert "OpenRouter ❌" in content
assert "Custom/Local API ❌" in content
# Check summary shows 0 configured
assert "**Configured Providers**: 0" in content
@pytest.mark.asyncio
async def test_execute_with_gemini_configured(self, tool):
"""Test listing models with Gemini configured"""
env_vars = {"GEMINI_API_KEY": "test-key", "DEFAULT_MODEL": "auto"}
with patch.dict(os.environ, env_vars, clear=True):
result = await tool.execute({})
response = json.loads(result[0].text)
content = response["content"]
# Check Gemini shows as configured
assert "Google Gemini ✅" in content
assert "`flash` → `gemini-2.5-flash-preview-05-20`" in content
assert "`pro` → `gemini-2.5-pro-preview-06-05`" in content
assert "1M context" in content
# Check summary
assert "**Configured Providers**: 1" in content
@pytest.mark.asyncio
async def test_execute_with_multiple_providers(self, tool):
"""Test listing models with multiple providers configured"""
env_vars = {
"GEMINI_API_KEY": "test-key",
"OPENAI_API_KEY": "test-key",
"XAI_API_KEY": "test-key",
"DEFAULT_MODEL": "auto",
}
with patch.dict(os.environ, env_vars, clear=True):
result = await tool.execute({})
response = json.loads(result[0].text)
content = response["content"]
# Check all show as configured
assert "Google Gemini ✅" in content
assert "OpenAI ✅" in content
assert "X.AI (Grok) ✅" in content
# Check models are listed
assert "`o3`" in content
assert "`grok`" in content
# Check summary
assert "**Configured Providers**: 3" in content
@pytest.mark.asyncio
async def test_execute_with_openrouter(self, tool):
"""Test listing models with OpenRouter configured"""
env_vars = {"OPENROUTER_API_KEY": "test-key", "DEFAULT_MODEL": "auto"}
with patch.dict(os.environ, env_vars, clear=True):
result = await tool.execute({})
response = json.loads(result[0].text)
content = response["content"]
# Check OpenRouter shows as configured
assert "OpenRouter ✅" in content
assert "Access to multiple cloud AI providers" in content
# Should show some models (mocked registry will have some)
assert "Available Models" in content
@pytest.mark.asyncio
async def test_execute_with_custom_api(self, tool):
"""Test listing models with custom API configured"""
env_vars = {"CUSTOM_API_URL": "http://localhost:11434", "DEFAULT_MODEL": "auto"}
with patch.dict(os.environ, env_vars, clear=True):
result = await tool.execute({})
response = json.loads(result[0].text)
content = response["content"]
# Check Custom API shows as configured
assert "Custom/Local API ✅" in content
assert "http://localhost:11434" in content
assert "Local models via Ollama" in content
@pytest.mark.asyncio
async def test_output_includes_usage_tips(self, tool):
"""Test that output includes helpful usage tips"""
result = await tool.execute({})
response = json.loads(result[0].text)
content = response["content"]
# Check for usage tips
assert "**Usage Tips**:" in content
assert "Use model aliases" in content
assert "auto mode" in content
def test_model_category(self, tool):
"""Test that tool uses FAST_RESPONSE category"""
from tools.models import ToolModelCategory
assert tool.get_model_category() == ToolModelCategory.FAST_RESPONSE

View File

@@ -0,0 +1,282 @@
"""
Integration tests for model enumeration across all provider combinations.
These tests ensure that the _get_available_models() method correctly returns
all expected models based on which providers are configured via environment variables.
"""
import importlib
import os
import pytest
from providers.registry import ModelProviderRegistry
from tools.analyze import AnalyzeTool
@pytest.mark.no_mock_provider
class TestModelEnumeration:
"""Test model enumeration with various provider configurations"""
def setup_method(self):
"""Set up clean state before each test."""
# Save original environment state
self._original_env = {
"DEFAULT_MODEL": os.environ.get("DEFAULT_MODEL", ""),
"GEMINI_API_KEY": os.environ.get("GEMINI_API_KEY", ""),
"OPENAI_API_KEY": os.environ.get("OPENAI_API_KEY", ""),
"XAI_API_KEY": os.environ.get("XAI_API_KEY", ""),
"OPENROUTER_API_KEY": os.environ.get("OPENROUTER_API_KEY", ""),
"CUSTOM_API_URL": os.environ.get("CUSTOM_API_URL", ""),
}
# Clear provider registry
ModelProviderRegistry._instance = None
def teardown_method(self):
"""Clean up after each test."""
# Restore original environment
for key, value in self._original_env.items():
if value:
os.environ[key] = value
elif key in os.environ:
del os.environ[key]
# Reload config
import config
importlib.reload(config)
# Clear provider registry
ModelProviderRegistry._instance = None
def _setup_environment(self, provider_config):
"""Helper to set up environment variables for testing."""
# Clear all provider-related env vars first
for key in ["GEMINI_API_KEY", "OPENAI_API_KEY", "XAI_API_KEY", "OPENROUTER_API_KEY", "CUSTOM_API_URL"]:
if key in os.environ:
del os.environ[key]
# Set new values
for key, value in provider_config.items():
if value is not None:
os.environ[key] = value
# Always set auto mode for these tests
os.environ["DEFAULT_MODEL"] = "auto"
# Reload config to pick up changes
import config
importlib.reload(config)
# Reload tools.base to ensure fresh state
import tools.base
importlib.reload(tools.base)
def test_native_models_always_included(self):
"""Test that native models from MODEL_CAPABILITIES_DESC are always included."""
self._setup_environment({}) # No providers configured
tool = AnalyzeTool()
models = tool._get_available_models()
# All native models should be present
native_models = [
"flash",
"pro", # Gemini aliases
"o3",
"o3-mini",
"o3-pro",
"o4-mini",
"o4-mini-high", # OpenAI models
"grok",
"grok-3",
"grok-3-fast",
"grok3",
"grokfast", # X.AI models
"gemini-2.5-flash-preview-05-20",
"gemini-2.5-pro-preview-06-05", # Full Gemini names
]
for model in native_models:
assert model in models, f"Native model {model} should always be in enum"
def test_openrouter_models_with_api_key(self):
"""Test that OpenRouter models are included when API key is configured."""
self._setup_environment({"OPENROUTER_API_KEY": "test-key"})
tool = AnalyzeTool()
models = tool._get_available_models()
# Check for some known OpenRouter model aliases
openrouter_models = ["opus", "sonnet", "haiku", "mistral-large", "deepseek"]
found_count = sum(1 for m in openrouter_models if m in models)
assert found_count >= 3, f"Expected at least 3 OpenRouter models, found {found_count}"
assert len(models) > 20, f"With OpenRouter, should have many models, got {len(models)}"
def test_openrouter_models_without_api_key(self):
"""Test that OpenRouter models are NOT included when API key is not configured."""
self._setup_environment({}) # No OpenRouter key
tool = AnalyzeTool()
models = tool._get_available_models()
# OpenRouter-specific models should NOT be present
openrouter_only_models = ["opus", "sonnet", "haiku"]
found_count = sum(1 for m in openrouter_only_models if m in models)
assert found_count == 0, "OpenRouter models should not be included without API key"
def test_custom_models_with_custom_url(self):
"""Test that custom models are included when CUSTOM_API_URL is configured."""
self._setup_environment({"CUSTOM_API_URL": "http://localhost:11434"})
tool = AnalyzeTool()
models = tool._get_available_models()
# Check for custom models (marked with is_custom=true)
custom_models = ["local-llama", "llama3.2"]
found_count = sum(1 for m in custom_models if m in models)
assert found_count >= 1, f"Expected at least 1 custom model, found {found_count}"
def test_custom_models_without_custom_url(self):
"""Test that custom models are NOT included when CUSTOM_API_URL is not configured."""
self._setup_environment({}) # No custom URL
tool = AnalyzeTool()
models = tool._get_available_models()
# Custom-only models should NOT be present
custom_only_models = ["local-llama", "llama3.2"]
found_count = sum(1 for m in custom_only_models if m in models)
assert found_count == 0, "Custom models should not be included without CUSTOM_API_URL"
def test_all_providers_combined(self):
"""Test that all models are included when all providers are configured."""
self._setup_environment(
{
"GEMINI_API_KEY": "test-key",
"OPENAI_API_KEY": "test-key",
"XAI_API_KEY": "test-key",
"OPENROUTER_API_KEY": "test-key",
"CUSTOM_API_URL": "http://localhost:11434",
}
)
tool = AnalyzeTool()
models = tool._get_available_models()
# Should have all types of models
assert "flash" in models # Gemini
assert "o3" in models # OpenAI
assert "grok" in models # X.AI
assert "opus" in models or "sonnet" in models # OpenRouter
assert "local-llama" in models or "llama3.2" in models # Custom
# Should have many models total
assert len(models) > 50, f"With all providers, should have 50+ models, got {len(models)}"
# No duplicates
assert len(models) == len(set(models)), "Should have no duplicate models"
def test_mixed_provider_combinations(self):
"""Test various mixed provider configurations."""
test_cases = [
# (provider_config, expected_model_samples, min_count)
(
{"GEMINI_API_KEY": "test", "OPENROUTER_API_KEY": "test"},
["flash", "pro", "opus"], # Gemini + OpenRouter models
30,
),
(
{"OPENAI_API_KEY": "test", "CUSTOM_API_URL": "http://localhost"},
["o3", "o4-mini", "local-llama"], # OpenAI + Custom models
18, # 14 native + ~4 custom models
),
(
{"XAI_API_KEY": "test", "OPENROUTER_API_KEY": "test"},
["grok", "grok-3", "opus"], # X.AI + OpenRouter models
30,
),
]
for provider_config, expected_samples, min_count in test_cases:
self._setup_environment(provider_config)
tool = AnalyzeTool()
models = tool._get_available_models()
# Check expected models are present
for model in expected_samples:
if model in ["local-llama", "llama3.2"]: # Custom models might not all be present
continue
assert model in models, f"Expected {model} with config {provider_config}"
# Check minimum count
assert (
len(models) >= min_count
), f"Expected at least {min_count} models with {provider_config}, got {len(models)}"
def test_no_duplicates_with_overlapping_providers(self):
"""Test that models aren't duplicated when multiple providers offer the same model."""
self._setup_environment(
{
"OPENAI_API_KEY": "test",
"OPENROUTER_API_KEY": "test", # OpenRouter also offers OpenAI models
}
)
tool = AnalyzeTool()
models = tool._get_available_models()
# Count occurrences of each model
model_counts = {}
for model in models:
model_counts[model] = model_counts.get(model, 0) + 1
# Check no duplicates
duplicates = {m: count for m, count in model_counts.items() if count > 1}
assert len(duplicates) == 0, f"Found duplicate models: {duplicates}"
def test_schema_enum_matches_get_available_models(self):
"""Test that the schema enum matches what _get_available_models returns."""
self._setup_environment({"OPENROUTER_API_KEY": "test", "CUSTOM_API_URL": "http://localhost:11434"})
tool = AnalyzeTool()
# Get models from both methods
available_models = tool._get_available_models()
schema = tool.get_input_schema()
schema_enum = schema["properties"]["model"]["enum"]
# They should match exactly
assert set(available_models) == set(schema_enum), "Schema enum should match _get_available_models output"
assert len(available_models) == len(schema_enum), "Should have same number of models (no duplicates)"
@pytest.mark.parametrize(
"model_name,should_exist",
[
("flash", True), # Native Gemini
("o3", True), # Native OpenAI
("grok", True), # Native X.AI
("gemini-2.5-flash-preview-05-20", True), # Full native name
("o4-mini-high", True), # Native OpenAI variant
("grok-3-fast", True), # Native X.AI variant
],
)
def test_specific_native_models_always_present(self, model_name, should_exist):
"""Test that specific native models are always present regardless of configuration."""
self._setup_environment({}) # No providers
tool = AnalyzeTool()
models = tool._get_available_models()
if should_exist:
assert model_name in models, f"Native model {model_name} should always be present"
else:
assert model_name not in models, f"Model {model_name} should not be present"

View File

@@ -28,8 +28,8 @@ class TestServerTools:
assert "tracer" in tool_names
assert "version" in tool_names
# Should have exactly 10 tools (including refactor and tracer)
assert len(tools) == 10
# Should have exactly 11 tools (including refactor, tracer, and listmodels)
assert len(tools) == 11
# Check descriptions are verbose
for tool in tools:

View File

@@ -6,6 +6,7 @@ from .analyze import AnalyzeTool
from .chat import ChatTool
from .codereview import CodeReviewTool
from .debug import DebugIssueTool
from .listmodels import ListModelsTool
from .precommit import Precommit
from .refactor import RefactorTool
from .testgen import TestGenerationTool
@@ -18,6 +19,7 @@ __all__ = [
"DebugIssueTool",
"AnalyzeTool",
"ChatTool",
"ListModelsTool",
"Precommit",
"RefactorTool",
"TestGenerationTool",

View File

@@ -99,6 +99,9 @@ class ToolRequest(BaseModel):
class BaseTool(ABC):
# Class-level cache for OpenRouter registry to avoid multiple loads
_openrouter_registry_cache = None
"""
Abstract base class for all Gemini tools.
@@ -210,6 +213,20 @@ class BaseTool(ABC):
"""
pass
@classmethod
def _get_openrouter_registry(cls):
"""Get cached OpenRouter registry instance."""
if BaseTool._openrouter_registry_cache is None:
import logging
from providers.openrouter_registry import OpenRouterModelRegistry
logger = logging.getLogger(__name__)
logger.info("Loading OpenRouter registry for the first time (will be cached for all tools)")
BaseTool._openrouter_registry_cache = OpenRouterModelRegistry()
return BaseTool._openrouter_registry_cache
def is_effective_auto_mode(self) -> bool:
"""
Check if we're in effective auto mode for schema generation.

View File

@@ -39,21 +39,32 @@ class CodeReviewRequest(ToolRequest):
)
prompt: str = Field(
...,
description="User's summary of what the code does, expected behavior, constraints, and review objectives",
description=(
"User's summary of what the code does, expected behavior, constraints, and review objectives. "
"IMPORTANT: Before using this tool, Claude should first perform its own preliminary review - "
"examining the code structure, identifying potential issues, understanding the business logic, "
"and noting areas of concern. Include Claude's initial observations about code quality, potential "
"bugs, architectural patterns, and specific areas that need deeper scrutiny. This dual-perspective "
"approach (Claude's analysis + external model's review) provides more comprehensive feedback and "
"catches issues that either reviewer might miss alone."
),
)
images: Optional[list[str]] = Field(
None,
description="Optional images of architecture diagrams, UI mockups, design documents, or visual references for code review context",
description=(
"Optional images of architecture diagrams, UI mockups, design documents, or visual references "
"for code review context"
),
)
review_type: str = Field("full", description="Type of review: full|security|performance|quick")
focus_on: Optional[str] = Field(
None,
description="Specific aspects to focus on, or additional context that would help understand areas of concern",
description=("Specific aspects to focus on, or additional context that would help understand areas of concern"),
)
standards: Optional[str] = Field(None, description="Coding standards or guidelines to enforce")
severity_filter: str = Field(
"all",
description="Minimum severity to report: critical|high|medium|all",
description="Minimum severity to report: critical|high|medium|low|all",
)
@@ -81,7 +92,8 @@ class CodeReviewTool(BaseTool):
"Choose thinking_mode based on review scope: 'low' for small code snippets, "
"'medium' for standard files/modules (default), 'high' for complex systems/architectures, "
"'max' for critical security audits or large codebases requiring deepest analysis. "
"Note: If you're not currently using a top-tier model such as Opus 4 or above, these tools can provide enhanced capabilities."
"Note: If you're not currently using a top-tier model such as Opus 4 or above, these tools "
"can provide enhanced capabilities."
)
def get_input_schema(self) -> dict[str, Any]:
@@ -96,12 +108,24 @@ class CodeReviewTool(BaseTool):
"model": self.get_model_field_schema(),
"prompt": {
"type": "string",
"description": "User's summary of what the code does, expected behavior, constraints, and review objectives",
"description": (
"User's summary of what the code does, expected behavior, constraints, and review "
"objectives. IMPORTANT: Before using this tool, Claude should first perform its own "
"preliminary review - examining the code structure, identifying potential issues, "
"understanding the business logic, and noting areas of concern. Include Claude's initial "
"observations about code quality, potential bugs, architectural patterns, and specific "
"areas that need deeper scrutiny. This dual-perspective approach (Claude's analysis + "
"external model's review) provides more comprehensive feedback and catches issues that "
"either reviewer might miss alone."
),
},
"images": {
"type": "array",
"items": {"type": "string"},
"description": "Optional images of architecture diagrams, UI mockups, design documents, or visual references for code review context",
"description": (
"Optional images of architecture diagrams, UI mockups, design documents, or visual "
"references for code review context"
),
},
"review_type": {
"type": "string",
@@ -111,7 +135,10 @@ class CodeReviewTool(BaseTool):
},
"focus_on": {
"type": "string",
"description": "Specific aspects to focus on, or additional context that would help understand areas of concern",
"description": (
"Specific aspects to focus on, or additional context that would help understand "
"areas of concern"
),
},
"standards": {
"type": "string",
@@ -119,7 +146,7 @@ class CodeReviewTool(BaseTool):
},
"severity_filter": {
"type": "string",
"enum": ["critical", "high", "medium", "all"],
"enum": ["critical", "high", "medium", "low", "all"],
"default": "all",
"description": "Minimum severity level to report",
},
@@ -132,16 +159,29 @@ class CodeReviewTool(BaseTool):
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), max (100% of model max)",
"description": (
"Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), "
"max (100% of model max)"
),
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
"description": (
"Enable web search for documentation, best practices, and current information. "
"Particularly useful for: brainstorming sessions, architectural design discussions, "
"exploring industry best practices, working with specific frameworks/technologies, "
"researching solutions to complex problems, or when current documentation and community "
"insights would enhance the analysis."
),
"default": True,
},
"continuation_id": {
"type": "string",
"description": "Thread continuation ID for multi-turn conversations. Can be used to continue conversations across different tools. Only provide this if continuing a previous conversation thread.",
"description": (
"Thread continuation ID for multi-turn conversations. Can be used to continue "
"conversations across different tools. Only provide this if continuing a previous "
"conversation thread."
),
},
},
"required": ["files", "prompt"] + (["model"] if self.is_effective_auto_mode() else []),
@@ -263,7 +303,8 @@ class CodeReviewTool(BaseTool):
{file_content}
=== END CODE ===
Please provide a code review aligned with the user's context and expectations, following the format specified in the system prompt."""
Please provide a code review aligned with the user's context and expectations, following the format specified """
"in the system prompt." ""
return full_prompt
@@ -285,10 +326,14 @@ Please provide a code review aligned with the user's context and expectations, f
**Claude's Next Steps:**
1. **Understand the Context**: First examine the specific functions, files, and code sections mentioned in the review to understand each issue thoroughly.
1. **Understand the Context**: First examine the specific functions, files, and code sections mentioned in """
"""the review to understand each issue thoroughly.
2. **Present Options to User**: After understanding the issues, ask the user which specific improvements they would like to implement, presenting them as a clear list of options.
2. **Present Options to User**: After understanding the issues, ask the user which specific improvements """
"""they would like to implement, presenting them as a clear list of options.
3. **Implement Selected Fixes**: Only implement the fixes the user chooses, ensuring each change is made correctly and maintains code quality.
3. **Implement Selected Fixes**: Only implement the fixes the user chooses, ensuring each change is made """
"""correctly and maintains code quality.
Remember: Always understand the code context before suggesting fixes, and let the user decide which improvements to implement."""
Remember: Always understand the code context before suggesting fixes, and let the user decide which """
"""improvements to implement."""

279
tools/listmodels.py Normal file
View File

@@ -0,0 +1,279 @@
"""
List Models Tool - Display all available models organized by provider
This tool provides a comprehensive view of all AI models available in the system,
organized by their provider (Gemini, OpenAI, X.AI, OpenRouter, Custom).
It shows which providers are configured and what models can be used.
"""
import os
from typing import Any, Optional
from mcp.types import TextContent
from tools.base import BaseTool, ToolRequest
from tools.models import ToolModelCategory, ToolOutput
class ListModelsTool(BaseTool):
"""
Tool for listing all available AI models organized by provider.
This tool helps users understand:
- Which providers are configured (have API keys)
- What models are available from each provider
- Model aliases and their full names
- Context window sizes and capabilities
"""
def get_name(self) -> str:
return "listmodels"
def get_description(self) -> str:
return (
"LIST AVAILABLE MODELS - Display all AI models organized by provider. "
"Shows which providers are configured, available models, their aliases, "
"context windows, and capabilities. Useful for understanding what models "
"can be used and their characteristics."
)
def get_input_schema(self) -> dict[str, Any]:
"""Return the JSON schema for the tool's input"""
return {"type": "object", "properties": {}, "required": []}
def get_system_prompt(self) -> str:
"""No AI model needed for this tool"""
return ""
def get_request_model(self):
"""Return the Pydantic model for request validation."""
return ToolRequest
async def prepare_prompt(self, request: ToolRequest) -> str:
"""Not used for this utility tool"""
return ""
def format_response(self, response: str, request: ToolRequest, model_info: Optional[dict] = None) -> str:
"""Not used for this utility tool"""
return response
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
"""
List all available models organized by provider.
This overrides the base class execute to provide direct output without AI model calls.
Args:
arguments: Standard tool arguments (none required)
Returns:
Formatted list of models by provider
"""
from config import MODEL_CAPABILITIES_DESC
from providers.openrouter_registry import OpenRouterModelRegistry
output_lines = ["# Available AI Models\n"]
# Check native providers
native_providers = {
"gemini": {
"name": "Google Gemini",
"env_key": "GEMINI_API_KEY",
"models": {
"flash": "gemini-2.5-flash-preview-05-20",
"pro": "gemini-2.5-pro-preview-06-05",
},
},
"openai": {
"name": "OpenAI",
"env_key": "OPENAI_API_KEY",
"models": {
"o3": "o3",
"o3-mini": "o3-mini",
"o3-pro": "o3-pro",
"o4-mini": "o4-mini",
"o4-mini-high": "o4-mini-high",
},
},
"xai": {
"name": "X.AI (Grok)",
"env_key": "XAI_API_KEY",
"models": {
"grok": "grok-3",
"grok-3": "grok-3",
"grok-3-fast": "grok-3-fast",
"grok3": "grok-3",
"grokfast": "grok-3-fast",
},
},
}
# Check each native provider
for provider_key, provider_info in native_providers.items():
api_key = os.getenv(provider_info["env_key"])
is_configured = api_key and api_key != f"your_{provider_key}_api_key_here"
output_lines.append(f"## {provider_info['name']} {'' if is_configured else ''}")
if is_configured:
output_lines.append("**Status**: Configured and available")
output_lines.append("\n**Models**:")
for alias, full_name in provider_info["models"].items():
# Get description from MODEL_CAPABILITIES_DESC
desc = MODEL_CAPABILITIES_DESC.get(alias, "")
if isinstance(desc, str):
# Extract context window from description
import re
context_match = re.search(r"\(([^)]+context)\)", desc)
context_info = context_match.group(1) if context_match else ""
output_lines.append(f"- `{alias}` → `{full_name}` - {context_info}")
# Extract key capability
if "Ultra-fast" in desc:
output_lines.append(" - Fast processing, quick iterations")
elif "Deep reasoning" in desc:
output_lines.append(" - Extended reasoning with thinking mode")
elif "Strong reasoning" in desc:
output_lines.append(" - Logical problems, systematic analysis")
elif "EXTREMELY EXPENSIVE" in desc:
output_lines.append(" - ⚠️ Professional grade (very expensive)")
else:
output_lines.append(f"**Status**: Not configured (set {provider_info['env_key']})")
output_lines.append("")
# Check OpenRouter
openrouter_key = os.getenv("OPENROUTER_API_KEY")
is_openrouter_configured = openrouter_key and openrouter_key != "your_openrouter_api_key_here"
output_lines.append(f"## OpenRouter {'' if is_openrouter_configured else ''}")
if is_openrouter_configured:
output_lines.append("**Status**: Configured and available")
output_lines.append("**Description**: Access to multiple cloud AI providers via unified API")
try:
registry = OpenRouterModelRegistry()
aliases = registry.list_aliases()
# Group by provider for better organization
providers_models = {}
for alias in aliases[:20]: # Limit to first 20 to avoid overwhelming output
config = registry.resolve(alias)
if config and not (hasattr(config, "is_custom") and config.is_custom):
# Extract provider from model_name
provider = config.model_name.split("/")[0] if "/" in config.model_name else "other"
if provider not in providers_models:
providers_models[provider] = []
providers_models[provider].append((alias, config))
output_lines.append("\n**Available Models** (showing top 20):")
for provider, models in sorted(providers_models.items()):
output_lines.append(f"\n*{provider.title()}:*")
for alias, config in models[:5]: # Limit each provider to 5 models
context_str = f"{config.context_window // 1000}K" if config.context_window else "?"
output_lines.append(f"- `{alias}` → `{config.model_name}` ({context_str} context)")
total_models = len(aliases)
output_lines.append(f"\n...and {total_models - 20} more models available")
except Exception as e:
output_lines.append(f"**Error loading models**: {str(e)}")
else:
output_lines.append("**Status**: Not configured (set OPENROUTER_API_KEY)")
output_lines.append("**Note**: Provides access to GPT-4, Claude, Mistral, and many more")
output_lines.append("")
# Check Custom API
custom_url = os.getenv("CUSTOM_API_URL")
output_lines.append(f"## Custom/Local API {'' if custom_url else ''}")
if custom_url:
output_lines.append("**Status**: Configured and available")
output_lines.append(f"**Endpoint**: {custom_url}")
output_lines.append("**Description**: Local models via Ollama, vLLM, LM Studio, etc.")
try:
registry = OpenRouterModelRegistry()
custom_models = []
for alias in registry.list_aliases():
config = registry.resolve(alias)
if config and hasattr(config, "is_custom") and config.is_custom:
custom_models.append((alias, config))
if custom_models:
output_lines.append("\n**Custom Models**:")
for alias, config in custom_models:
context_str = f"{config.context_window // 1000}K" if config.context_window else "?"
output_lines.append(f"- `{alias}` → `{config.model_name}` ({context_str} context)")
if config.description:
output_lines.append(f" - {config.description}")
except Exception as e:
output_lines.append(f"**Error loading custom models**: {str(e)}")
else:
output_lines.append("**Status**: Not configured (set CUSTOM_API_URL)")
output_lines.append("**Example**: CUSTOM_API_URL=http://localhost:11434 (for Ollama)")
output_lines.append("")
# Add summary
output_lines.append("## Summary")
# Count configured providers
configured_count = sum(
[
1
for p in native_providers.values()
if os.getenv(p["env_key"])
and os.getenv(p["env_key"]) != f"your_{p['env_key'].lower().replace('_api_key', '')}_api_key_here"
]
)
if is_openrouter_configured:
configured_count += 1
if custom_url:
configured_count += 1
output_lines.append(f"**Configured Providers**: {configured_count}")
# Get total available models
try:
from tools.analyze import AnalyzeTool
tool = AnalyzeTool()
total_models = len(tool._get_available_models())
output_lines.append(f"**Total Available Models**: {total_models}")
except Exception:
pass
# Add usage tips
output_lines.append("\n**Usage Tips**:")
output_lines.append("- Use model aliases (e.g., 'flash', 'o3', 'opus') for convenience")
output_lines.append("- In auto mode, Claude will select the best model for each task")
output_lines.append("- Custom models are only available when CUSTOM_API_URL is set")
output_lines.append("- OpenRouter provides access to many cloud models with one API key")
# Format output
content = "\n".join(output_lines)
tool_output = ToolOutput(
status="success",
content=content,
content_type="text",
metadata={
"tool_name": self.name,
"configured_providers": configured_count,
},
)
return [TextContent(type="text", text=tool_output.model_dump_json())]
def get_model_category(self) -> ToolModelCategory:
"""Return the model category for this tool."""
return ToolModelCategory.FAST_RESPONSE # Simple listing, no AI needed