Files
my-pal-mcp-server/tools/debug_issue.py
Fahad fb5c04ea60 feat: implement comprehensive thinking modes and migrate to google-genai
Major improvements to thinking capabilities and API integration:

- Remove all output token limits for future-proof responses
- Add 5-level thinking mode system: minimal, low, medium, high, max
- Migrate from google-generativeai to google-genai library
- Implement native thinkingBudget support for Gemini 2.5 Pro
- Set medium thinking as default for all tools, max for think_deeper

🧠 Thinking Modes:
- minimal (128 tokens) - simple tasks
- low (2048 tokens) - basic reasoning
- medium (8192 tokens) - default for most tools
- high (16384 tokens) - complex analysis
- max (32768 tokens) - default for think_deeper

🔧 Technical Changes:
- Complete migration to google-genai>=1.19.0
- Remove google-generativeai dependency
- Add ThinkingConfig with thinking_budget parameter
- Update all tools to support thinking_mode parameter
- Comprehensive test suite with 37 passing unit tests
- CI-friendly testing (no API key required for unit tests)
- Live integration tests for API verification

🧪 Testing & CI:
- Add GitHub Actions workflow with multi-Python support
- Unit tests use mocks, no API key required
- Live integration tests optional with API key
- Contributing guide with development setup
- All tests pass without external dependencies

🐛 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-09 09:35:21 +04:00

154 lines
5.3 KiB
Python

"""
Debug Issue tool - Root cause analysis and debugging assistance
"""
from typing import Any, Dict, List, Optional
from pydantic import Field
from config import MAX_CONTEXT_TOKENS, TEMPERATURE_ANALYTICAL
from prompts import DEBUG_ISSUE_PROMPT
from utils import check_token_limit, read_files
from .base import BaseTool, ToolRequest
class DebugIssueRequest(ToolRequest):
"""Request model for debug_issue tool"""
error_description: str = Field(
..., description="Error message, symptoms, or issue description"
)
error_context: Optional[str] = Field(
None, description="Stack trace, logs, or additional error context"
)
files: Optional[List[str]] = Field(
None, description="Files or directories that might be related to the issue"
)
runtime_info: Optional[str] = Field(
None, description="Environment, versions, or runtime information"
)
previous_attempts: Optional[str] = Field(
None, description="What has been tried already"
)
class DebugIssueTool(BaseTool):
"""Advanced debugging and root cause analysis tool"""
def get_name(self) -> str:
return "debug_issue"
def get_description(self) -> str:
return (
"DEBUG & ROOT CAUSE ANALYSIS - Expert debugging for complex issues. "
"Use this when you need help tracking down bugs or understanding errors. "
"Triggers: 'debug this', 'why is this failing', 'root cause', 'trace error'. "
"I'll analyze the issue, find root causes, and provide step-by-step solutions. "
"Include error messages, stack traces, and relevant code for best results."
)
def get_input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"error_description": {
"type": "string",
"description": "Error message, symptoms, or issue description",
},
"error_context": {
"type": "string",
"description": "Stack trace, logs, or additional error context",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files or directories that might be related to the issue",
},
"runtime_info": {
"type": "string",
"description": "Environment, versions, or runtime information",
},
"previous_attempts": {
"type": "string",
"description": "What has been tried already",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2 for accuracy)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
},
},
"required": ["error_description"],
}
def get_system_prompt(self) -> str:
return DEBUG_ISSUE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_request_model(self):
return DebugIssueRequest
async def prepare_prompt(self, request: DebugIssueRequest) -> str:
"""Prepare the debugging prompt"""
# Build context sections
context_parts = [
f"=== ISSUE DESCRIPTION ===\n{request.error_description}\n=== END DESCRIPTION ==="
]
if request.error_context:
context_parts.append(
f"\n=== ERROR CONTEXT/STACK TRACE ===\n{request.error_context}\n=== END CONTEXT ==="
)
if request.runtime_info:
context_parts.append(
f"\n=== RUNTIME INFORMATION ===\n{request.runtime_info}\n=== END RUNTIME ==="
)
if request.previous_attempts:
context_parts.append(
f"\n=== PREVIOUS ATTEMPTS ===\n{request.previous_attempts}\n=== END ATTEMPTS ==="
)
# Add relevant files if provided
if request.files:
file_content, _ = read_files(request.files)
context_parts.append(
f"\n=== RELEVANT CODE ===\n{file_content}\n=== END CODE ==="
)
full_context = "\n".join(context_parts)
# Check token limits
within_limit, estimated_tokens = check_token_limit(full_context)
if not within_limit:
raise ValueError(
f"Context too large (~{estimated_tokens:,} tokens). "
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
)
# Combine everything
full_prompt = f"""{self.get_system_prompt()}
{full_context}
Please debug this issue following the structured format in the system prompt.
Focus on finding the root cause and providing actionable solutions."""
return full_prompt
def format_response(
self, response: str, request: DebugIssueRequest
) -> str:
"""Format the debugging response"""
return f"Debug Analysis\n{'=' * 50}\n\n{response}"