Files
my-pal-mcp-server/server.py
Fahad fb5c04ea60 feat: implement comprehensive thinking modes and migrate to google-genai
Major improvements to thinking capabilities and API integration:

- Remove all output token limits for future-proof responses
- Add 5-level thinking mode system: minimal, low, medium, high, max
- Migrate from google-generativeai to google-genai library
- Implement native thinkingBudget support for Gemini 2.5 Pro
- Set medium thinking as default for all tools, max for think_deeper

🧠 Thinking Modes:
- minimal (128 tokens) - simple tasks
- low (2048 tokens) - basic reasoning
- medium (8192 tokens) - default for most tools
- high (16384 tokens) - complex analysis
- max (32768 tokens) - default for think_deeper

🔧 Technical Changes:
- Complete migration to google-genai>=1.19.0
- Remove google-generativeai dependency
- Add ThinkingConfig with thinking_budget parameter
- Update all tools to support thinking_mode parameter
- Comprehensive test suite with 37 passing unit tests
- CI-friendly testing (no API key required for unit tests)
- Live integration tests for API verification

🧪 Testing & CI:
- Add GitHub Actions workflow with multi-Python support
- Unit tests use mocks, no API key required
- Live integration tests optional with API key
- Contributing guide with development setup
- All tests pass without external dependencies

🐛 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-09 09:35:21 +04:00

304 lines
10 KiB
Python

"""
Gemini MCP Server - Main server implementation
"""
import asyncio
import logging
import os
import sys
from datetime import datetime
from typing import Any, Dict, List
from google import genai
from google.genai import types
from mcp.server import Server
from mcp.server.models import InitializationOptions
from mcp.server.stdio import stdio_server
from mcp.types import TextContent, Tool
from config import (DEFAULT_MODEL, MAX_CONTEXT_TOKENS, __author__, __updated__,
__version__)
from tools import AnalyzeTool, DebugIssueTool, ReviewCodeTool, ThinkDeeperTool
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create the MCP server instance
server: Server = Server("gemini-server")
# Initialize tools
TOOLS = {
"think_deeper": ThinkDeeperTool(),
"review_code": ReviewCodeTool(),
"debug_issue": DebugIssueTool(),
"analyze": AnalyzeTool(),
}
def configure_gemini():
"""Configure Gemini API with the provided API key"""
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise ValueError(
"GEMINI_API_KEY environment variable is required. "
"Please set it with your Gemini API key."
)
# API key is used when creating clients in tools
logger.info("Gemini API key found")
@server.list_tools()
async def handle_list_tools() -> List[Tool]:
"""List all available tools with verbose descriptions"""
tools = []
for tool in TOOLS.values():
tools.append(
Tool(
name=tool.name,
description=tool.description,
inputSchema=tool.get_input_schema(),
)
)
# Add utility tools
tools.extend(
[
Tool(
name="chat",
description=(
"GENERAL CHAT & COLLABORATIVE THINKING - Use Gemini as your thinking partner! "
"Perfect for: bouncing ideas during your own analysis, getting second opinions on your plans, "
"collaborative brainstorming, validating your checklists and approaches, exploring alternatives. "
"Also great for: explanations, comparisons, general development questions. "
"Triggers: 'ask gemini', 'brainstorm with gemini', 'get gemini's opinion', 'discuss with gemini', "
"'share my thinking with gemini', 'explain', 'what is', 'how do I'."
),
inputSchema={
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "Your question, topic, or current thinking to discuss with Gemini",
},
"context_files": {
"type": "array",
"items": {"type": "string"},
"description": "Optional files for context",
},
"temperature": {
"type": "number",
"description": "Response creativity (0-1, default 0.5)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
},
},
"required": ["prompt"],
},
),
Tool(
name="list_models",
description=(
"LIST AVAILABLE MODELS - Show all Gemini models you can use. "
"Lists model names, descriptions, and which one is the default."
),
inputSchema={"type": "object", "properties": {}},
),
Tool(
name="get_version",
description=(
"VERSION & CONFIGURATION - Get server version, configuration details, "
"and list of available tools. Useful for debugging and understanding capabilities."
),
inputSchema={"type": "object", "properties": {}},
),
]
)
return tools
@server.call_tool()
async def handle_call_tool(
name: str, arguments: Dict[str, Any]
) -> List[TextContent]:
"""Handle tool execution requests"""
# Handle dynamic tools
if name in TOOLS:
tool = TOOLS[name]
return await tool.execute(arguments)
# Handle static tools
elif name == "chat":
return await handle_chat(arguments)
elif name == "list_models":
return await handle_list_models()
elif name == "get_version":
return await handle_get_version()
else:
return [TextContent(type="text", text=f"Unknown tool: {name}")]
async def handle_chat(arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle general chat requests"""
from config import TEMPERATURE_BALANCED, DEFAULT_MODEL, THINKING_MODEL
from prompts import CHAT_PROMPT
from utils import read_files
prompt = arguments.get("prompt", "")
context_files = arguments.get("context_files", [])
temperature = arguments.get("temperature", TEMPERATURE_BALANCED)
thinking_mode = arguments.get("thinking_mode", "medium")
# Build the full prompt with system context
user_content = prompt
if context_files:
file_content, _ = read_files(context_files)
user_content = f"{prompt}\n\n=== CONTEXT FILES ===\n{file_content}\n=== END CONTEXT ==="
# Combine system prompt with user content
full_prompt = f"{CHAT_PROMPT}\n\n=== USER REQUEST ===\n{user_content}\n=== END REQUEST ===\n\nPlease provide a thoughtful, comprehensive response:"
try:
# Create model with thinking configuration
from tools.base import BaseTool
# Create a temporary tool instance to use create_model method
class TempTool(BaseTool):
def get_name(self): return "chat"
def get_description(self): return ""
def get_input_schema(self): return {}
def get_system_prompt(self): return ""
def get_request_model(self): return None
async def prepare_prompt(self, request): return ""
temp_tool = TempTool()
model = temp_tool.create_model(DEFAULT_MODEL, temperature, thinking_mode)
response = model.generate_content(full_prompt)
if response.candidates and response.candidates[0].content.parts:
text = response.candidates[0].content.parts[0].text
else:
text = "Response blocked or incomplete"
return [TextContent(type="text", text=text)]
except Exception as e:
return [TextContent(type="text", text=f"Error in chat: {str(e)}")]
async def handle_list_models() -> List[TextContent]:
"""List available Gemini models"""
try:
import json
# Get API key
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
return [TextContent(type="text", text="Error: GEMINI_API_KEY not set")]
client = genai.Client(api_key=api_key)
models = []
# List models using the new API
try:
model_list = client.models.list()
for model_info in model_list:
models.append(
{
"name": getattr(model_info, "id", "Unknown"),
"display_name": getattr(model_info, "display_name", getattr(model_info, "id", "Unknown")),
"description": getattr(model_info, "description", "No description"),
"is_default": getattr(model_info, "id", "").endswith(DEFAULT_MODEL),
}
)
except Exception as e:
# Fallback: return some known models
models = [
{
"name": "gemini-2.5-pro-preview-06-05",
"display_name": "Gemini 2.5 Pro",
"description": "Latest Gemini 2.5 Pro model",
"is_default": True,
},
{
"name": "gemini-2.0-flash-thinking-exp",
"display_name": "Gemini 2.0 Flash Thinking",
"description": "Enhanced reasoning model",
"is_default": False,
},
]
return [TextContent(type="text", text=json.dumps(models, indent=2))]
except Exception as e:
return [
TextContent(type="text", text=f"Error listing models: {str(e)}")
]
async def handle_get_version() -> List[TextContent]:
"""Get version and configuration information"""
version_info = {
"version": __version__,
"updated": __updated__,
"author": __author__,
"default_model": DEFAULT_MODEL,
"max_context_tokens": f"{MAX_CONTEXT_TOKENS:,}",
"python_version": f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}",
"server_started": datetime.now().isoformat(),
"available_tools": list(TOOLS.keys())
+ ["chat", "list_models", "get_version"],
}
text = f"""Gemini MCP Server v{__version__}
Updated: {__updated__}
Author: {__author__}
Configuration:
- Default Model: {DEFAULT_MODEL}
- Max Context: {MAX_CONTEXT_TOKENS:,} tokens
- Python: {version_info['python_version']}
- Started: {version_info['server_started']}
Available Tools:
{chr(10).join(f" - {tool}" for tool in version_info['available_tools'])}
For updates, visit: https://github.com/BeehiveInnovations/gemini-mcp-server"""
return [TextContent(type="text", text=text)]
async def main():
"""Main entry point for the server"""
# Configure Gemini API
configure_gemini()
# Run the server using stdio transport
async with stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="gemini",
server_version=__version__,
capabilities={"tools": {}},
),
)
if __name__ == "__main__":
asyncio.run(main())