Files
my-pal-mcp-server/providers/custom.py
Fahad f44ca326ef Breaking change: openrouter_models.json -> custom_models.json
* Support for Custom URLs and custom models, including locally hosted models such as ollama
* Support for native + openrouter + local models (i.e. dozens of models) means you can start delegating sub-tasks to particular models or work to local models such as localizations or other boring work etc.
* Several tests added
* precommit to also include untracked (new) files
* Logfile auto rollover
* Improved logging
2025-06-13 15:22:09 +04:00

274 lines
11 KiB
Python

"""Custom API provider implementation."""
import logging
import os
from typing import Optional
from .base import (
ModelCapabilities,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
from .openai_compatible import OpenAICompatibleProvider
from .openrouter_registry import OpenRouterModelRegistry
class CustomProvider(OpenAICompatibleProvider):
"""Custom API provider for local models.
Supports local inference servers like Ollama, vLLM, LM Studio,
and any OpenAI-compatible API endpoint.
"""
FRIENDLY_NAME = "Custom API"
# Model registry for managing configurations and aliases (shared with OpenRouter)
_registry: Optional[OpenRouterModelRegistry] = None
def __init__(self, api_key: str = "", base_url: str = "", **kwargs):
"""Initialize Custom provider for local/self-hosted models.
This provider supports any OpenAI-compatible API endpoint including:
- Ollama (typically no API key required)
- vLLM (may require API key)
- LM Studio (may require API key)
- Text Generation WebUI (may require API key)
- Enterprise/self-hosted APIs (typically require API key)
Args:
api_key: API key for the custom endpoint. Can be empty string for
providers that don't require authentication (like Ollama).
Falls back to CUSTOM_API_KEY environment variable if not provided.
base_url: Base URL for the custom API endpoint (e.g., 'http://host.docker.internal:11434/v1').
Falls back to CUSTOM_API_URL environment variable if not provided.
**kwargs: Additional configuration passed to parent OpenAI-compatible provider
Raises:
ValueError: If no base_url is provided via parameter or environment variable
"""
# Fall back to environment variables only if not provided
if not base_url:
base_url = os.getenv("CUSTOM_API_URL", "")
if not api_key:
api_key = os.getenv("CUSTOM_API_KEY", "")
if not base_url:
raise ValueError(
"Custom API URL must be provided via base_url parameter or CUSTOM_API_URL environment variable"
)
# For Ollama and other providers that don't require authentication,
# set a dummy API key to avoid OpenAI client header issues
if not api_key:
api_key = "dummy-key-for-unauthenticated-endpoint"
logging.debug("Using dummy API key for unauthenticated custom endpoint")
logging.info(f"Initializing Custom provider with endpoint: {base_url}")
super().__init__(api_key, base_url=base_url, **kwargs)
# Initialize model registry (shared with OpenRouter for consistent aliases)
if CustomProvider._registry is None:
CustomProvider._registry = OpenRouterModelRegistry()
# Log loaded models and aliases
models = self._registry.list_models()
aliases = self._registry.list_aliases()
logging.info(f"Custom provider loaded {len(models)} models with {len(aliases)} aliases")
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model aliases to actual model names.
For Ollama-style models, strips version tags (e.g., 'llama3.2:latest' -> 'llama3.2')
since the base model name is what's typically used in API calls.
Args:
model_name: Input model name or alias
Returns:
Resolved model name with version tags stripped if applicable
"""
# First, try to resolve through registry as-is
config = self._registry.resolve(model_name)
if config:
if config.model_name != model_name:
logging.info(f"Resolved model alias '{model_name}' to '{config.model_name}'")
return config.model_name
else:
# If not found in registry, handle version tags for local models
# Strip version tags (anything after ':') for Ollama-style models
if ":" in model_name:
base_model = model_name.split(":")[0]
logging.debug(f"Stripped version tag from '{model_name}' -> '{base_model}'")
# Try to resolve the base model through registry
base_config = self._registry.resolve(base_model)
if base_config:
logging.info(f"Resolved base model '{base_model}' to '{base_config.model_name}'")
return base_config.model_name
else:
return base_model
else:
# If not found in registry and no version tag, return as-is
logging.debug(f"Model '{model_name}' not found in registry, using as-is")
return model_name
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a custom model.
Args:
model_name: Name of the model (or alias)
Returns:
ModelCapabilities from registry or generic defaults
"""
# Try to get from registry first
capabilities = self._registry.get_capabilities(model_name)
if capabilities:
# Update provider type to CUSTOM
capabilities.provider = ProviderType.CUSTOM
return capabilities
else:
# Resolve any potential aliases and create generic capabilities
resolved_name = self._resolve_model_name(model_name)
logging.debug(
f"Using generic capabilities for '{resolved_name}' via Custom API. "
"Consider adding to custom_models.json for specific capabilities."
)
# Create generic capabilities with conservative defaults
capabilities = ModelCapabilities(
provider=ProviderType.CUSTOM,
model_name=resolved_name,
friendly_name=f"{self.FRIENDLY_NAME} ({resolved_name})",
context_window=32_768, # Conservative default
supports_extended_thinking=False, # Most custom models don't support this
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=False, # Conservative default
temperature_constraint=RangeTemperatureConstraint(0.0, 2.0, 0.7),
)
# Mark as generic for validation purposes
capabilities._is_generic = True
return capabilities
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.CUSTOM
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is allowed.
For custom endpoints, only accept models that are explicitly intended for
local/custom usage. This provider should NOT handle OpenRouter or cloud models.
Args:
model_name: Model name to validate
Returns:
True if model is intended for custom/local endpoint
"""
logging.debug(f"Custom provider validating model: '{model_name}'")
# Try to resolve through registry first
config = self._registry.resolve(model_name)
if config:
model_id = config.model_name
# Only accept models that are clearly local/custom based on the resolved name
# Local models should not have vendor/ prefix (except for special cases)
is_local_model = (
"/" not in model_id # Simple names like "llama3.2"
or "local" in model_id.lower() # Explicit local indicator
or
# Check if any of the aliases contain local indicators
any("local" in alias.lower() or "ollama" in alias.lower() for alias in config.aliases)
if hasattr(config, "aliases")
else False
)
if is_local_model:
logging.debug(f"Model '{model_name}' -> '{model_id}' validated via registry (local model)")
return True
else:
# This is a cloud/OpenRouter model - reject it for custom provider
logging.debug(f"Model '{model_name}' -> '{model_id}' rejected (cloud model for OpenRouter)")
return False
# Strip :latest suffix and try validation again (it's just a version tag)
clean_model_name = model_name
if model_name.endswith(":latest"):
clean_model_name = model_name[:-7] # Remove ":latest"
logging.debug(f"Stripped :latest from '{model_name}' -> '{clean_model_name}'")
# Try to resolve the clean name
config = self._registry.resolve(clean_model_name)
if config:
return self.validate_model_name(clean_model_name) # Recursively validate clean name
# Accept models with explicit local indicators in the name
if any(indicator in clean_model_name.lower() for indicator in ["local", "ollama", "vllm", "lmstudio"]):
logging.debug(f"Model '{clean_model_name}' validated via local indicators")
return True
# Accept simple model names without vendor prefix ONLY if they're not in registry
# This allows for unknown local models like custom fine-tunes
if "/" not in clean_model_name and ":" not in clean_model_name and not config:
logging.debug(f"Model '{clean_model_name}' validated via simple name pattern (unknown local model)")
return True
logging.debug(f"Model '{model_name}' NOT validated by custom provider")
return False
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using the custom API.
Args:
prompt: User prompt to send to the model
model_name: Name of the model to use
system_prompt: Optional system prompt for model behavior
temperature: Sampling temperature
max_output_tokens: Maximum tokens to generate
**kwargs: Additional provider-specific parameters
Returns:
ModelResponse with generated content and metadata
"""
# Resolve model alias to actual model name
resolved_model = self._resolve_model_name(model_name)
# Call parent method with resolved model name
return super().generate_content(
prompt=prompt,
model_name=resolved_model,
system_prompt=system_prompt,
temperature=temperature,
max_output_tokens=max_output_tokens,
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode.
Most custom/local models don't support extended thinking.
Args:
model_name: Model to check
Returns:
False (custom models generally don't support thinking mode)
"""
return False