Files
my-pal-mcp-server/providers/openai_compatible.py

561 lines
21 KiB
Python

"""Base class for OpenAI-compatible API providers."""
import base64
import ipaddress
import logging
import os
import time
from abc import abstractmethod
from typing import Optional
from urllib.parse import urlparse
from openai import OpenAI
from .base import (
ModelCapabilities,
ModelProvider,
ModelResponse,
ProviderType,
)
class OpenAICompatibleProvider(ModelProvider):
"""Base class for any provider using an OpenAI-compatible API.
This includes:
- Direct OpenAI API
- OpenRouter
- Any other OpenAI-compatible endpoint
"""
DEFAULT_HEADERS = {}
FRIENDLY_NAME = "OpenAI Compatible"
def __init__(self, api_key: str, base_url: str = None, **kwargs):
"""Initialize the provider with API key and optional base URL.
Args:
api_key: API key for authentication
base_url: Base URL for the API endpoint
**kwargs: Additional configuration options including timeout
"""
super().__init__(api_key, **kwargs)
self._client = None
self.base_url = base_url
self.organization = kwargs.get("organization")
self.allowed_models = self._parse_allowed_models()
# Configure timeouts - especially important for custom/local endpoints
self.timeout_config = self._configure_timeouts(**kwargs)
# Validate base URL for security
if self.base_url:
self._validate_base_url()
# Warn if using external URL without authentication
if self.base_url and not self._is_localhost_url() and not api_key:
logging.warning(
f"Using external URL '{self.base_url}' without API key. "
"This may be insecure. Consider setting an API key for authentication."
)
def _parse_allowed_models(self) -> Optional[set[str]]:
"""Parse allowed models from environment variable.
Returns:
Set of allowed model names (lowercase) or None if not configured
"""
# Get provider-specific allowed models
provider_type = self.get_provider_type().value.upper()
env_var = f"{provider_type}_ALLOWED_MODELS"
models_str = os.getenv(env_var, "")
if models_str:
# Parse and normalize to lowercase for case-insensitive comparison
models = {m.strip().lower() for m in models_str.split(",") if m.strip()}
if models:
logging.info(f"Configured allowed models for {self.FRIENDLY_NAME}: {sorted(models)}")
return models
# Log info if no allow-list configured for proxy providers
if self.get_provider_type() not in [ProviderType.GOOGLE, ProviderType.OPENAI]:
logging.info(
f"Model allow-list not configured for {self.FRIENDLY_NAME} - all models permitted. "
f"To restrict access, set {env_var} with comma-separated model names."
)
return None
def _configure_timeouts(self, **kwargs):
"""Configure timeout settings based on provider type and custom settings.
Custom URLs and local models often need longer timeouts due to:
- Network latency on local networks
- Extended thinking models taking longer to respond
- Local inference being slower than cloud APIs
Returns:
httpx.Timeout object with appropriate timeout settings
"""
import httpx
# Default timeouts - more generous for custom/local endpoints
default_connect = 30.0 # 30 seconds for connection (vs OpenAI's 5s)
default_read = 600.0 # 10 minutes for reading (same as OpenAI default)
default_write = 600.0 # 10 minutes for writing
default_pool = 600.0 # 10 minutes for pool
# For custom/local URLs, use even longer timeouts
if self.base_url and self._is_localhost_url():
default_connect = 60.0 # 1 minute for local connections
default_read = 1800.0 # 30 minutes for local models (extended thinking)
default_write = 1800.0 # 30 minutes for local models
default_pool = 1800.0 # 30 minutes for local models
logging.info(f"Using extended timeouts for local endpoint: {self.base_url}")
elif self.base_url:
default_connect = 45.0 # 45 seconds for custom remote endpoints
default_read = 900.0 # 15 minutes for custom remote endpoints
default_write = 900.0 # 15 minutes for custom remote endpoints
default_pool = 900.0 # 15 minutes for custom remote endpoints
logging.info(f"Using extended timeouts for custom endpoint: {self.base_url}")
# Allow override via kwargs or environment variables in future, for now...
connect_timeout = kwargs.get("connect_timeout", float(os.getenv("CUSTOM_CONNECT_TIMEOUT", default_connect)))
read_timeout = kwargs.get("read_timeout", float(os.getenv("CUSTOM_READ_TIMEOUT", default_read)))
write_timeout = kwargs.get("write_timeout", float(os.getenv("CUSTOM_WRITE_TIMEOUT", default_write)))
pool_timeout = kwargs.get("pool_timeout", float(os.getenv("CUSTOM_POOL_TIMEOUT", default_pool)))
timeout = httpx.Timeout(connect=connect_timeout, read=read_timeout, write=write_timeout, pool=pool_timeout)
logging.debug(
f"Configured timeouts - Connect: {connect_timeout}s, Read: {read_timeout}s, "
f"Write: {write_timeout}s, Pool: {pool_timeout}s"
)
return timeout
def _is_localhost_url(self) -> bool:
"""Check if the base URL points to localhost or local network.
Returns:
True if URL is localhost or local network, False otherwise
"""
if not self.base_url:
return False
try:
parsed = urlparse(self.base_url)
hostname = parsed.hostname
# Check for common localhost patterns
if hostname in ["localhost", "127.0.0.1", "::1"]:
return True
# Check for Docker internal hostnames (like host.docker.internal)
if hostname and ("docker.internal" in hostname or "host.docker.internal" in hostname):
return True
# Check for private network ranges (local network)
if hostname:
try:
ip = ipaddress.ip_address(hostname)
return ip.is_private or ip.is_loopback
except ValueError:
# Not an IP address, might be a hostname
pass
return False
except Exception:
return False
def _validate_base_url(self) -> None:
"""Validate base URL for security (SSRF protection).
Raises:
ValueError: If URL is invalid or potentially unsafe
"""
if not self.base_url:
return
try:
parsed = urlparse(self.base_url)
# Check URL scheme - only allow http/https
if parsed.scheme not in ("http", "https"):
raise ValueError(f"Invalid URL scheme: {parsed.scheme}. Only http/https allowed.")
# Check hostname exists
if not parsed.hostname:
raise ValueError("URL must include a hostname")
# Check port is valid (if specified)
port = parsed.port
if port is not None and (port < 1 or port > 65535):
raise ValueError(f"Invalid port number: {port}. Must be between 1 and 65535.")
except Exception as e:
if isinstance(e, ValueError):
raise
raise ValueError(f"Invalid base URL '{self.base_url}': {str(e)}")
@property
def client(self):
"""Lazy initialization of OpenAI client with security checks and timeout configuration."""
if self._client is None:
client_kwargs = {
"api_key": self.api_key,
}
if self.base_url:
client_kwargs["base_url"] = self.base_url
if self.organization:
client_kwargs["organization"] = self.organization
# Add default headers if any
if self.DEFAULT_HEADERS:
client_kwargs["default_headers"] = self.DEFAULT_HEADERS.copy()
# Add configured timeout settings
if hasattr(self, "timeout_config") and self.timeout_config:
client_kwargs["timeout"] = self.timeout_config
logging.debug(f"OpenAI client initialized with custom timeout: {self.timeout_config}")
self._client = OpenAI(**client_kwargs)
return self._client
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
images: Optional[list[str]] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using the OpenAI-compatible API.
Args:
prompt: User prompt to send to the model
model_name: Name of the model to use
system_prompt: Optional system prompt for model behavior
temperature: Sampling temperature
max_output_tokens: Maximum tokens to generate
**kwargs: Additional provider-specific parameters
Returns:
ModelResponse with generated content and metadata
"""
# Validate model name against allow-list
if not self.validate_model_name(model_name):
raise ValueError(f"Model '{model_name}' not in allowed models list. Allowed models: {self.allowed_models}")
# Validate parameters
self.validate_parameters(model_name, temperature)
# Prepare messages
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
# Prepare user message with text and potentially images
user_content = []
user_content.append({"type": "text", "text": prompt})
# Add images if provided and model supports vision
if images and self._supports_vision(model_name):
for image_path in images:
try:
image_content = self._process_image(image_path)
if image_content:
user_content.append(image_content)
except Exception as e:
logging.warning(f"Failed to process image {image_path}: {e}")
# Continue with other images and text
continue
elif images and not self._supports_vision(model_name):
logging.warning(f"Model {model_name} does not support images, ignoring {len(images)} image(s)")
# Add user message
if len(user_content) == 1:
# Only text content, use simple string format for compatibility
messages.append({"role": "user", "content": prompt})
else:
# Text + images, use content array format
messages.append({"role": "user", "content": user_content})
# Prepare completion parameters
completion_params = {
"model": model_name,
"messages": messages,
"temperature": temperature,
}
# Add max tokens if specified
if max_output_tokens:
completion_params["max_tokens"] = max_output_tokens
# Add any additional OpenAI-specific parameters
for key, value in kwargs.items():
if key in ["top_p", "frequency_penalty", "presence_penalty", "seed", "stop", "stream"]:
completion_params[key] = value
# Retry logic with progressive delays
max_retries = 4 # Total of 4 attempts
retry_delays = [1, 3, 5, 8] # Progressive delays: 1s, 3s, 5s, 8s
last_exception = None
for attempt in range(max_retries):
try:
# Generate completion
response = self.client.chat.completions.create(**completion_params)
# Extract content and usage
content = response.choices[0].message.content
usage = self._extract_usage(response)
return ModelResponse(
content=content,
usage=usage,
model_name=model_name,
friendly_name=self.FRIENDLY_NAME,
provider=self.get_provider_type(),
metadata={
"finish_reason": response.choices[0].finish_reason,
"model": response.model, # Actual model used
"id": response.id,
"created": response.created,
},
)
except Exception as e:
last_exception = e
# Check if this is a retryable error
error_str = str(e).lower()
is_retryable = any(
term in error_str
for term in [
"timeout",
"connection",
"network",
"temporary",
"unavailable",
"retry",
"429",
"500",
"502",
"503",
"504",
]
)
# If this is the last attempt or not retryable, give up
if attempt == max_retries - 1 or not is_retryable:
break
# Get progressive delay
delay = retry_delays[attempt]
# Log retry attempt
logging.warning(
f"{self.FRIENDLY_NAME} API error for model {model_name}, attempt {attempt + 1}/{max_retries}: {str(e)}. Retrying in {delay}s..."
)
time.sleep(delay)
# If we get here, all retries failed
error_msg = (
f"{self.FRIENDLY_NAME} API error for model {model_name} after {max_retries} attempts: {str(last_exception)}"
)
logging.error(error_msg)
raise RuntimeError(error_msg) from last_exception
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text.
Uses a layered approach:
1. Try provider-specific token counting endpoint
2. Try tiktoken for known model families
3. Fall back to character-based estimation
Args:
text: Text to count tokens for
model_name: Model name for tokenizer selection
Returns:
Estimated token count
"""
# 1. Check if provider has a remote token counting endpoint
if hasattr(self, "count_tokens_remote"):
try:
return self.count_tokens_remote(text, model_name)
except Exception as e:
logging.debug(f"Remote token counting failed: {e}")
# 2. Try tiktoken for known models
try:
import tiktoken
# Try to get encoding for the specific model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
# Try common encodings based on model patterns
if "gpt-4" in model_name or "gpt-3.5" in model_name:
encoding = tiktoken.get_encoding("cl100k_base")
else:
encoding = tiktoken.get_encoding("cl100k_base") # Default
return len(encoding.encode(text))
except (ImportError, Exception) as e:
logging.debug(f"Tiktoken not available or failed: {e}")
# 3. Fall back to character-based estimation
logging.warning(
f"No specific tokenizer available for '{model_name}'. "
"Using character-based estimation (~4 chars per token)."
)
return len(text) // 4
def validate_parameters(self, model_name: str, temperature: float, **kwargs) -> None:
"""Validate model parameters.
For proxy providers, this may use generic capabilities.
Args:
model_name: Model to validate for
temperature: Temperature to validate
**kwargs: Additional parameters to validate
"""
try:
capabilities = self.get_capabilities(model_name)
# Check if we're using generic capabilities
if hasattr(capabilities, "_is_generic"):
logging.debug(
f"Using generic parameter validation for {model_name}. Actual model constraints may differ."
)
# Validate temperature using parent class method
super().validate_parameters(model_name, temperature, **kwargs)
except Exception as e:
# For proxy providers, we might not have accurate capabilities
# Log warning but don't fail
logging.warning(f"Parameter validation limited for {model_name}: {e}")
def _extract_usage(self, response) -> dict[str, int]:
"""Extract token usage from OpenAI response.
Args:
response: OpenAI API response object
Returns:
Dictionary with usage statistics
"""
usage = {}
if hasattr(response, "usage") and response.usage:
usage["input_tokens"] = getattr(response.usage, "prompt_tokens", 0)
usage["output_tokens"] = getattr(response.usage, "completion_tokens", 0)
usage["total_tokens"] = getattr(response.usage, "total_tokens", 0)
return usage
@abstractmethod
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific model.
Must be implemented by subclasses.
"""
pass
@abstractmethod
def get_provider_type(self) -> ProviderType:
"""Get the provider type.
Must be implemented by subclasses.
"""
pass
@abstractmethod
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported.
Must be implemented by subclasses.
"""
pass
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode.
Default is False for OpenAI-compatible providers.
"""
return False
def _supports_vision(self, model_name: str) -> bool:
"""Check if the model supports vision (image processing).
Default implementation for OpenAI-compatible providers.
Subclasses should override with specific model support.
"""
# Common vision-capable models - only include models that actually support images
vision_models = {
"gpt-4o",
"gpt-4o-mini",
"gpt-4-turbo",
"gpt-4-vision-preview",
"gpt-4.1-2025-04-14", # GPT-4.1 supports vision
"o3",
"o3-mini",
"o3-pro",
"o4-mini",
"o4-mini-high",
# Note: Claude models would be handled by a separate provider
}
supports = model_name.lower() in vision_models
logging.debug(f"Model '{model_name}' vision support: {supports}")
return supports
def _process_image(self, image_path: str) -> Optional[dict]:
"""Process an image for OpenAI-compatible API."""
try:
if image_path.startswith("...
return {"type": "image_url", "image_url": {"url": image_path}}
else:
# Handle file path - translate for Docker environment
from utils.file_utils import translate_path_for_environment
translated_path = translate_path_for_environment(image_path)
logging.debug(f"Translated image path from '{image_path}' to '{translated_path}'")
if not os.path.exists(translated_path):
logging.warning(f"Image file not found: {translated_path} (original: {image_path})")
return None
# Use translated path for all subsequent operations
image_path = translated_path
# Detect MIME type from file extension using centralized mappings
from utils.file_types import get_image_mime_type
ext = os.path.splitext(image_path)[1].lower()
mime_type = get_image_mime_type(ext)
logging.debug(f"Processing image '{image_path}' with extension '{ext}' as MIME type '{mime_type}'")
# Read and encode the image
with open(image_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode()
# Create data URL for OpenAI API
data_url = f"data:{mime_type};base64,{image_data}"
return {"type": "image_url", "image_url": {"url": data_url}}
except Exception as e:
logging.error(f"Error processing image {image_path}: {e}")
return None