Files
my-pal-mcp-server/tools/base.py
Fahad e7dcc681d3 refactor: remove MAX_OUTPUT_TOKENS configuration
Remove the hardcoded 32,768 token output limit to allow Gemini to use
its default/dynamic output token allocation. This provides more
flexibility for responses without artificial constraints.

- Remove MAX_OUTPUT_TOKENS constant from config
- Remove max_tokens parameter from ToolRequest base model
- Clean up all references in server.py and tools/base.py
- Remove test_output_tokens.py as it's no longer needed
- Update imports to remove MAX_OUTPUT_TOKENS references

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-09 08:15:45 +04:00

124 lines
3.8 KiB
Python

"""
Base class for all Gemini MCP tools
"""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
import google.generativeai as genai
from mcp.types import TextContent
from pydantic import BaseModel, Field
class ToolRequest(BaseModel):
"""Base request model for all tools"""
model: Optional[str] = Field(
None, description="Model to use (defaults to Gemini 2.5 Pro)"
)
temperature: Optional[float] = Field(
None, description="Temperature for response (tool-specific defaults)"
)
class BaseTool(ABC):
"""Base class for all Gemini tools"""
def __init__(self):
self.name = self.get_name()
self.description = self.get_description()
self.default_temperature = self.get_default_temperature()
@abstractmethod
def get_name(self) -> str:
"""Return the tool name"""
pass
@abstractmethod
def get_description(self) -> str:
"""Return the verbose tool description for Claude"""
pass
@abstractmethod
def get_input_schema(self) -> Dict[str, Any]:
"""Return the JSON schema for tool inputs"""
pass
@abstractmethod
def get_system_prompt(self) -> str:
"""Return the system prompt for this tool"""
pass
def get_default_temperature(self) -> float:
"""Return default temperature for this tool"""
return 0.5
@abstractmethod
def get_request_model(self):
"""Return the Pydantic model for request validation"""
pass
async def execute(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Execute the tool with given arguments"""
try:
# Validate request
request_model = self.get_request_model()
request = request_model(**arguments)
# Prepare the prompt
prompt = await self.prepare_prompt(request)
# Get model configuration
from config import DEFAULT_MODEL
model_name = getattr(request, "model", None) or DEFAULT_MODEL
temperature = getattr(request, "temperature", None)
if temperature is None:
temperature = self.get_default_temperature()
# Create and configure model
model = self.create_model(model_name, temperature)
# Generate response
response = model.generate_content(prompt)
# Handle response
if response.candidates and response.candidates[0].content.parts:
text = response.candidates[0].content.parts[0].text
else:
finish_reason = (
response.candidates[0].finish_reason
if response.candidates
else "Unknown"
)
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
# Format response
formatted_response = self.format_response(text, request)
return [TextContent(type="text", text=formatted_response)]
except Exception as e:
error_msg = f"Error in {self.name}: {str(e)}"
return [TextContent(type="text", text=error_msg)]
@abstractmethod
async def prepare_prompt(self, request) -> str:
"""Prepare the full prompt for Gemini"""
pass
def format_response(self, response: str, request) -> str:
"""Format the response for display (can be overridden)"""
return response
def create_model(
self, model_name: str, temperature: float
) -> genai.GenerativeModel:
"""Create a configured Gemini model"""
return genai.GenerativeModel(
model_name=model_name,
generation_config={
"temperature": temperature,
"candidate_count": 1,
},
)