194 lines
8.0 KiB
Python
194 lines
8.0 KiB
Python
"""
|
|
Chat tool - General development chat and collaborative thinking
|
|
"""
|
|
|
|
from typing import TYPE_CHECKING, Any, Optional
|
|
|
|
from pydantic import Field
|
|
|
|
if TYPE_CHECKING:
|
|
from tools.models import ToolModelCategory
|
|
|
|
from config import TEMPERATURE_BALANCED
|
|
from systemprompts import CHAT_PROMPT
|
|
|
|
from .base import BaseTool, ToolRequest
|
|
|
|
# Field descriptions to avoid duplication between Pydantic and JSON schema
|
|
CHAT_FIELD_DESCRIPTIONS = {
|
|
"prompt": (
|
|
"Your thorough, expressive question with as much context as possible. Remember: you're talking to "
|
|
"another Claude assistant who has deep expertise and can provide nuanced insights. Include your "
|
|
"current thinking, specific challenges, background context, what you've already tried, and what "
|
|
"kind of response would be most helpful. The more context and detail you provide, the more "
|
|
"valuable and targeted the response will be."
|
|
),
|
|
"files": "Optional files for context (must be FULL absolute paths to real files / folders - DO NOT SHORTEN)",
|
|
"images": (
|
|
"Optional images for visual context. Useful for UI discussions, diagrams, visual problems, "
|
|
"error screens, or architectural mockups."
|
|
),
|
|
}
|
|
|
|
|
|
class ChatRequest(ToolRequest):
|
|
"""Request model for chat tool"""
|
|
|
|
prompt: str = Field(..., description=CHAT_FIELD_DESCRIPTIONS["prompt"])
|
|
files: Optional[list[str]] = Field(default_factory=list, description=CHAT_FIELD_DESCRIPTIONS["files"])
|
|
images: Optional[list[str]] = Field(default_factory=list, description=CHAT_FIELD_DESCRIPTIONS["images"])
|
|
|
|
|
|
class ChatTool(BaseTool):
|
|
"""General development chat and collaborative thinking tool"""
|
|
|
|
def get_name(self) -> str:
|
|
return "chat"
|
|
|
|
def get_description(self) -> str:
|
|
return (
|
|
"GENERAL CHAT & COLLABORATIVE THINKING - Use the AI model as your thinking partner! "
|
|
"Perfect for: bouncing ideas during your own analysis, getting second opinions on your plans, "
|
|
"collaborative brainstorming, validating your checklists and approaches, exploring alternatives. "
|
|
"Also great for: explanations, comparisons, general development questions. "
|
|
"Use this when you want to ask questions, brainstorm ideas, get opinions, discuss topics, "
|
|
"share your thinking, or need explanations about concepts and approaches. "
|
|
"Note: If you're not currently using a top-tier model such as Opus 4 or above, these tools can "
|
|
"provide enhanced capabilities."
|
|
)
|
|
|
|
def get_input_schema(self) -> dict[str, Any]:
|
|
schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"prompt": {
|
|
"type": "string",
|
|
"description": CHAT_FIELD_DESCRIPTIONS["prompt"],
|
|
},
|
|
"files": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": CHAT_FIELD_DESCRIPTIONS["files"],
|
|
},
|
|
"images": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": CHAT_FIELD_DESCRIPTIONS["images"],
|
|
},
|
|
"model": self.get_model_field_schema(),
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Response creativity (0-1, default 0.5)",
|
|
"minimum": 0,
|
|
"maximum": 1,
|
|
},
|
|
"thinking_mode": {
|
|
"type": "string",
|
|
"enum": ["minimal", "low", "medium", "high", "max"],
|
|
"description": (
|
|
"Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), "
|
|
"max (100% of model max)"
|
|
),
|
|
},
|
|
"use_websearch": {
|
|
"type": "boolean",
|
|
"description": (
|
|
"Enable web search for documentation, best practices, and current information. "
|
|
"Particularly useful for: brainstorming sessions, architectural design discussions, "
|
|
"exploring industry best practices, working with specific frameworks/technologies, "
|
|
"researching solutions to complex problems, or when current documentation and "
|
|
"community insights would enhance the analysis."
|
|
),
|
|
"default": True,
|
|
},
|
|
"continuation_id": {
|
|
"type": "string",
|
|
"description": (
|
|
"Thread continuation ID for multi-turn conversations. Can be used to continue "
|
|
"conversations across different tools. Only provide this if continuing a previous "
|
|
"conversation thread."
|
|
),
|
|
},
|
|
},
|
|
"required": ["prompt"] + (["model"] if self.is_effective_auto_mode() else []),
|
|
}
|
|
|
|
return schema
|
|
|
|
def get_system_prompt(self) -> str:
|
|
return CHAT_PROMPT
|
|
|
|
def get_default_temperature(self) -> float:
|
|
return TEMPERATURE_BALANCED
|
|
|
|
def get_model_category(self) -> "ToolModelCategory":
|
|
"""Chat prioritizes fast responses and cost efficiency"""
|
|
from tools.models import ToolModelCategory
|
|
|
|
return ToolModelCategory.FAST_RESPONSE
|
|
|
|
def get_request_model(self):
|
|
return ChatRequest
|
|
|
|
async def prepare_prompt(self, request: ChatRequest) -> str:
|
|
"""Prepare the chat prompt with optional context files"""
|
|
# Check for prompt.txt in files
|
|
prompt_content, updated_files = self.handle_prompt_file(request.files)
|
|
|
|
# Use prompt.txt content if available, otherwise use the prompt field
|
|
user_content = prompt_content if prompt_content else request.prompt
|
|
|
|
# Check user input size at MCP transport boundary (before adding internal content)
|
|
size_check = self.check_prompt_size(user_content)
|
|
if size_check:
|
|
# Need to return error, but prepare_prompt returns str
|
|
# Use exception to handle this cleanly
|
|
|
|
from tools.models import ToolOutput
|
|
|
|
raise ValueError(f"MCP_SIZE_CHECK:{ToolOutput(**size_check).model_dump_json()}")
|
|
|
|
# Update request files list
|
|
if updated_files is not None:
|
|
request.files = updated_files
|
|
|
|
# Add context files if provided (using centralized file handling with filtering)
|
|
if request.files:
|
|
file_content, processed_files = self._prepare_file_content_for_prompt(
|
|
request.files, request.continuation_id, "Context files"
|
|
)
|
|
self._actually_processed_files = processed_files
|
|
if file_content:
|
|
user_content = f"{user_content}\n\n=== CONTEXT FILES ===\n{file_content}\n=== END CONTEXT ===="
|
|
|
|
# Check token limits
|
|
self._validate_token_limit(user_content, "Content")
|
|
|
|
# Add web search instruction if enabled
|
|
websearch_instruction = self.get_websearch_instruction(
|
|
request.use_websearch,
|
|
"""When discussing topics, consider if searches for these would help:
|
|
- Documentation for any technologies or concepts mentioned
|
|
- Current best practices and patterns
|
|
- Recent developments or updates
|
|
- Community discussions and solutions""",
|
|
)
|
|
|
|
# Combine system prompt with user content
|
|
full_prompt = f"""{self.get_system_prompt()}{websearch_instruction}
|
|
|
|
=== USER REQUEST ===
|
|
{user_content}
|
|
=== END REQUEST ===
|
|
|
|
Please provide a thoughtful, comprehensive response:"""
|
|
|
|
return full_prompt
|
|
|
|
def format_response(self, response: str, request: ChatRequest, model_info: Optional[dict] = None) -> str:
|
|
"""Format the chat response"""
|
|
return (
|
|
f"{response}\n\n---\n\n**Claude's Turn:** Evaluate this perspective alongside your analysis to "
|
|
"form a comprehensive solution and continue with the user's request and task at hand."
|
|
)
|