Files
my-pal-mcp-server/tools/analyze.py
Fahad fb5c04ea60 feat: implement comprehensive thinking modes and migrate to google-genai
Major improvements to thinking capabilities and API integration:

- Remove all output token limits for future-proof responses
- Add 5-level thinking mode system: minimal, low, medium, high, max
- Migrate from google-generativeai to google-genai library
- Implement native thinkingBudget support for Gemini 2.5 Pro
- Set medium thinking as default for all tools, max for think_deeper

🧠 Thinking Modes:
- minimal (128 tokens) - simple tasks
- low (2048 tokens) - basic reasoning
- medium (8192 tokens) - default for most tools
- high (16384 tokens) - complex analysis
- max (32768 tokens) - default for think_deeper

🔧 Technical Changes:
- Complete migration to google-genai>=1.19.0
- Remove google-generativeai dependency
- Add ThinkingConfig with thinking_budget parameter
- Update all tools to support thinking_mode parameter
- Comprehensive test suite with 37 passing unit tests
- CI-friendly testing (no API key required for unit tests)
- Live integration tests for API verification

🧪 Testing & CI:
- Add GitHub Actions workflow with multi-Python support
- Unit tests use mocks, no API key required
- Live integration tests optional with API key
- Contributing guide with development setup
- All tests pass without external dependencies

🐛 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-09 09:35:21 +04:00

161 lines
5.7 KiB
Python

"""
Analyze tool - General-purpose code and file analysis
"""
from typing import Any, Dict, List, Optional
from pydantic import Field
from config import MAX_CONTEXT_TOKENS, TEMPERATURE_ANALYTICAL
from prompts import ANALYZE_PROMPT
from utils import check_token_limit, read_files
from .base import BaseTool, ToolRequest
class AnalyzeRequest(ToolRequest):
"""Request model for analyze tool"""
files: List[str] = Field(..., description="Files or directories to analyze")
question: str = Field(..., description="What to analyze or look for")
analysis_type: Optional[str] = Field(
None,
description="Type of analysis: architecture|performance|security|quality|general",
)
output_format: Optional[str] = Field(
"detailed", description="Output format: summary|detailed|actionable"
)
class AnalyzeTool(BaseTool):
"""General-purpose file and code analysis tool"""
def get_name(self) -> str:
return "analyze"
def get_description(self) -> str:
return (
"ANALYZE FILES & CODE - General-purpose analysis for understanding code. "
"Supports both individual files and entire directories. "
"Use this for examining files, understanding architecture, or investigating specific aspects. "
"Triggers: 'analyze these files', 'examine this code', 'understand this'. "
"Perfect for: codebase exploration, dependency analysis, pattern detection. "
"Always uses file paths for clean terminal output."
)
def get_input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files or directories to analyze",
},
"question": {
"type": "string",
"description": "What to analyze or look for",
},
"analysis_type": {
"type": "string",
"enum": [
"architecture",
"performance",
"security",
"quality",
"general",
],
"description": "Type of analysis to perform",
},
"output_format": {
"type": "string",
"enum": ["summary", "detailed", "actionable"],
"default": "detailed",
"description": "How to format the output",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
},
},
"required": ["files", "question"],
}
def get_system_prompt(self) -> str:
return ANALYZE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_request_model(self):
return AnalyzeRequest
async def prepare_prompt(self, request: AnalyzeRequest) -> str:
"""Prepare the analysis prompt"""
# Read all files
file_content, summary = read_files(request.files)
# Check token limits
within_limit, estimated_tokens = check_token_limit(file_content)
if not within_limit:
raise ValueError(
f"Files too large (~{estimated_tokens:,} tokens). "
f"Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
)
# Build analysis instructions
analysis_focus = []
if request.analysis_type:
type_focus = {
"architecture": "Focus on architectural patterns, structure, and design decisions",
"performance": "Focus on performance characteristics and optimization opportunities",
"security": "Focus on security implications and potential vulnerabilities",
"quality": "Focus on code quality, maintainability, and best practices",
"general": "Provide a comprehensive general analysis",
}
analysis_focus.append(type_focus.get(request.analysis_type, ""))
if request.output_format == "summary":
analysis_focus.append("Provide a concise summary of key findings")
elif request.output_format == "actionable":
analysis_focus.append(
"Focus on actionable insights and specific recommendations"
)
focus_instruction = "\n".join(analysis_focus) if analysis_focus else ""
# Combine everything
full_prompt = f"""{self.get_system_prompt()}
{focus_instruction}
=== USER QUESTION ===
{request.question}
=== END QUESTION ===
=== FILES TO ANALYZE ===
{file_content}
=== END FILES ===
Please analyze these files to answer the user's question."""
return full_prompt
def format_response(self, response: str, request: AnalyzeRequest) -> str:
"""Format the analysis response"""
header = f"Analysis: {request.question[:50]}..."
if request.analysis_type:
header = f"{request.analysis_type.upper()} Analysis"
summary_text = f"Analyzed {len(request.files)} file(s)"
return f"{header}\n{summary_text}\n{'=' * 50}\n\n{response}"