Files
my-pal-mcp-server/gemini_server.py
Fahad b86c42cf3a fix: Set Gemini 2.5 Pro Preview as default and improve portability
Changes:
- Restored Gemini 2.5 Pro Preview as the default model
- Removed hardcoded paths from claude_config_example.json
- Added MCP_DISCOVERY.md explaining how Claude discovers MCP servers
- Updated README with natural language usage examples

The server now defaults to the most capable Gemini 2.5 Pro Preview model
as requested, and all paths are now relative for better portability.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-08 19:49:08 +04:00

342 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Gemini MCP Server - Model Context Protocol server for Google Gemini
Enhanced for large-scale code analysis with 1M token context window
"""
import os
import json
import asyncio
from typing import Optional, Dict, Any, List, Union
from pathlib import Path
from mcp.server.models import InitializationOptions
from mcp.server import Server, NotificationOptions
from mcp.server.stdio import stdio_server
from mcp.types import TextContent, Tool
from pydantic import BaseModel, Field
import google.generativeai as genai
# Default to Gemini 2.5 Pro Preview with maximum context
DEFAULT_MODEL = "gemini-2.5-pro-preview-06-05"
MAX_CONTEXT_TOKENS = 1000000 # 1M tokens
class GeminiChatRequest(BaseModel):
"""Request model for Gemini chat"""
prompt: str = Field(..., description="The prompt to send to Gemini")
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
temperature: Optional[float] = Field(0.7, description="Temperature for response randomness (0-1)")
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
class CodeAnalysisRequest(BaseModel):
"""Request model for code analysis"""
files: Optional[List[str]] = Field(None, description="List of file paths to analyze")
code: Optional[str] = Field(None, description="Direct code content to analyze")
question: str = Field(..., description="Question or analysis request about the code")
system_prompt: Optional[str] = Field(None, description="Optional system prompt for context")
max_tokens: Optional[int] = Field(8192, description="Maximum number of tokens in response")
temperature: Optional[float] = Field(0.3, description="Temperature for response randomness (0-1)")
model: Optional[str] = Field(DEFAULT_MODEL, description=f"Model to use (defaults to {DEFAULT_MODEL})")
# Create the MCP server instance
server = Server("gemini-server")
# Configure Gemini API
def configure_gemini():
"""Configure the Gemini API with API key from environment"""
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise ValueError("GEMINI_API_KEY environment variable is not set")
genai.configure(api_key=api_key)
def read_file_content(file_path: str) -> str:
"""Read content from a file with error handling"""
try:
path = Path(file_path)
if not path.exists():
return f"Error: File not found: {file_path}"
if not path.is_file():
return f"Error: Not a file: {file_path}"
# Read the file
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return f"=== File: {file_path} ===\n{content}\n"
except Exception as e:
return f"Error reading {file_path}: {str(e)}"
def prepare_code_context(files: Optional[List[str]], code: Optional[str]) -> str:
"""Prepare code context from files and/or direct code"""
context_parts = []
# Add file contents
if files:
for file_path in files:
context_parts.append(read_file_content(file_path))
# Add direct code
if code:
context_parts.append("=== Direct Code ===\n" + code + "\n")
return "\n".join(context_parts)
@server.list_tools()
async def handle_list_tools() -> List[Tool]:
"""List all available tools"""
return [
Tool(
name="chat",
description="Chat with Gemini (optimized for 2.5 Pro with 1M context)",
inputSchema={
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The prompt to send to Gemini"
},
"system_prompt": {
"type": "string",
"description": "Optional system prompt for context"
},
"max_tokens": {
"type": "integer",
"description": "Maximum number of tokens in response",
"default": 8192
},
"temperature": {
"type": "number",
"description": "Temperature for response randomness (0-1)",
"default": 0.7,
"minimum": 0,
"maximum": 1
},
"model": {
"type": "string",
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
"default": DEFAULT_MODEL
}
},
"required": ["prompt"]
}
),
Tool(
name="analyze_code",
description="Analyze code files or snippets with Gemini's 1M context window",
inputSchema={
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string"},
"description": "List of file paths to analyze"
},
"code": {
"type": "string",
"description": "Direct code content to analyze (alternative to files)"
},
"question": {
"type": "string",
"description": "Question or analysis request about the code"
},
"system_prompt": {
"type": "string",
"description": "Optional system prompt for context"
},
"max_tokens": {
"type": "integer",
"description": "Maximum number of tokens in response",
"default": 8192
},
"temperature": {
"type": "number",
"description": "Temperature for response randomness (0-1)",
"default": 0.3,
"minimum": 0,
"maximum": 1
},
"model": {
"type": "string",
"description": f"Model to use (defaults to {DEFAULT_MODEL})",
"default": DEFAULT_MODEL
}
},
"required": ["question"]
}
),
Tool(
name="list_models",
description="List available Gemini models",
inputSchema={
"type": "object",
"properties": {}
}
)
]
@server.call_tool()
async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]:
"""Handle tool execution requests"""
if name == "chat":
# Validate request
request = GeminiChatRequest(**arguments)
try:
# Use the specified model with optimized settings
model = genai.GenerativeModel(
model_name=request.model,
generation_config={
"temperature": request.temperature,
"max_output_tokens": request.max_tokens,
"candidate_count": 1,
}
)
# Prepare the prompt
full_prompt = request.prompt
if request.system_prompt:
full_prompt = f"{request.system_prompt}\n\n{request.prompt}"
# Generate response
response = model.generate_content(full_prompt)
# Handle response based on finish reason
if response.candidates and response.candidates[0].content.parts:
text = response.candidates[0].content.parts[0].text
else:
# Handle safety filters or other issues
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
return [TextContent(
type="text",
text=text
)]
except Exception as e:
return [TextContent(
type="text",
text=f"Error calling Gemini API: {str(e)}"
)]
elif name == "analyze_code":
# Validate request
request = CodeAnalysisRequest(**arguments)
# Check that we have either files or code
if not request.files and not request.code:
return [TextContent(
type="text",
text="Error: Must provide either 'files' or 'code' parameter"
)]
try:
# Prepare code context
code_context = prepare_code_context(request.files, request.code)
# Count approximate tokens (rough estimate: 1 token ≈ 4 characters)
estimated_tokens = len(code_context) // 4
if estimated_tokens > MAX_CONTEXT_TOKENS:
return [TextContent(
type="text",
text=f"Error: Code context too large (~{estimated_tokens:,} tokens). Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
)]
# Use the specified model with optimized settings for code analysis
model = genai.GenerativeModel(
model_name=request.model,
generation_config={
"temperature": request.temperature,
"max_output_tokens": request.max_tokens,
"candidate_count": 1,
}
)
# Prepare the full prompt
system_prompt = request.system_prompt or "You are an expert code analyst. Provide detailed, accurate analysis of the provided code."
full_prompt = f"{system_prompt}\n\nCode to analyze:\n\n{code_context}\n\nQuestion/Request: {request.question}"
# Generate response
response = model.generate_content(full_prompt)
# Handle response
if response.candidates and response.candidates[0].content.parts:
text = response.candidates[0].content.parts[0].text
else:
finish_reason = response.candidates[0].finish_reason if response.candidates else "Unknown"
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
return [TextContent(
type="text",
text=text
)]
except Exception as e:
return [TextContent(
type="text",
text=f"Error analyzing code: {str(e)}"
)]
elif name == "list_models":
try:
# List available models
models = []
for model in genai.list_models():
if 'generateContent' in model.supported_generation_methods:
models.append({
"name": model.name,
"display_name": model.display_name,
"description": model.description,
"is_default": model.name == DEFAULT_MODEL
})
return [TextContent(
type="text",
text=json.dumps(models, indent=2)
)]
except Exception as e:
return [TextContent(
type="text",
text=f"Error listing models: {str(e)}"
)]
else:
return [TextContent(
type="text",
text=f"Unknown tool: {name}"
)]
async def main():
"""Main entry point for the server"""
# Configure Gemini API
configure_gemini()
# Run the server using stdio transport
async with stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="gemini",
server_version="2.0.0",
capabilities={
"tools": {}
}
)
)
if __name__ == "__main__":
asyncio.run(main())