Files
my-pal-mcp-server/providers/xai.py
2025-10-04 10:35:32 +04:00

138 lines
5.5 KiB
Python

"""X.AI (GROK) model provider implementation."""
import logging
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from .openai_compatible import OpenAICompatibleProvider
from .shared import ModelCapabilities, ProviderType, TemperatureConstraint
logger = logging.getLogger(__name__)
class XAIModelProvider(OpenAICompatibleProvider):
"""Integration for X.AI's GROK models exposed over an OpenAI-style API.
Publishes capability metadata for the officially supported deployments and
maps tool-category preferences to the appropriate GROK model.
"""
FRIENDLY_NAME = "X.AI"
# Model configurations using ModelCapabilities objects
MODEL_CAPABILITIES = {
"grok-4": ModelCapabilities(
provider=ProviderType.XAI,
model_name="grok-4",
friendly_name="X.AI (Grok 4)",
intelligence_score=16,
context_window=256_000, # 256K tokens
max_output_tokens=256_000, # 256K tokens max output
supports_extended_thinking=True, # Grok-4 supports reasoning mode
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True, # Function calling supported
supports_json_mode=True, # Structured outputs supported
supports_images=True, # Multimodal capabilities
max_image_size_mb=20.0, # Standard image size limit
supports_temperature=True,
temperature_constraint=TemperatureConstraint.create("range"),
description="GROK-4 (256K context) - Frontier multimodal reasoning model with advanced capabilities",
aliases=["grok", "grok4", "grok-4"],
),
"grok-3": ModelCapabilities(
provider=ProviderType.XAI,
model_name="grok-3",
friendly_name="X.AI (Grok 3)",
intelligence_score=13,
context_window=131_072, # 131K tokens
max_output_tokens=131072,
supports_extended_thinking=False,
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_json_mode=False, # Assuming GROK doesn't have JSON mode yet
supports_images=False, # Assuming GROK is text-only for now
max_image_size_mb=0.0,
supports_temperature=True,
temperature_constraint=TemperatureConstraint.create("range"),
description="GROK-3 (131K context) - Advanced reasoning model from X.AI, excellent for complex analysis",
aliases=["grok3"],
),
"grok-3-fast": ModelCapabilities(
provider=ProviderType.XAI,
model_name="grok-3-fast",
friendly_name="X.AI (Grok 3 Fast)",
intelligence_score=12,
context_window=131_072, # 131K tokens
max_output_tokens=131072,
supports_extended_thinking=False,
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_json_mode=False, # Assuming GROK doesn't have JSON mode yet
supports_images=False, # Assuming GROK is text-only for now
max_image_size_mb=0.0,
supports_temperature=True,
temperature_constraint=TemperatureConstraint.create("range"),
description="GROK-3 Fast (131K context) - Higher performance variant, faster processing but more expensive",
aliases=["grok3fast", "grokfast", "grok3-fast"],
),
}
def __init__(self, api_key: str, **kwargs):
"""Initialize X.AI provider with API key."""
# Set X.AI base URL
kwargs.setdefault("base_url", "https://api.x.ai/v1")
super().__init__(api_key, **kwargs)
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.XAI
def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]:
"""Get XAI's preferred model for a given category from allowed models.
Args:
category: The tool category requiring a model
allowed_models: Pre-filtered list of models allowed by restrictions
Returns:
Preferred model name or None
"""
from tools.models import ToolModelCategory
if not allowed_models:
return None
if category == ToolModelCategory.EXTENDED_REASONING:
# Prefer GROK-4 for advanced reasoning with thinking mode
if "grok-4" in allowed_models:
return "grok-4"
elif "grok-3" in allowed_models:
return "grok-3"
# Fall back to any available model
return allowed_models[0]
elif category == ToolModelCategory.FAST_RESPONSE:
# Prefer GROK-3-Fast for speed, then GROK-4
if "grok-3-fast" in allowed_models:
return "grok-3-fast"
elif "grok-4" in allowed_models:
return "grok-4"
# Fall back to any available model
return allowed_models[0]
else: # BALANCED or default
# Prefer GROK-4 for balanced use (best overall capabilities)
if "grok-4" in allowed_models:
return "grok-4"
elif "grok-3" in allowed_models:
return "grok-3"
elif "grok-3-fast" in allowed_models:
return "grok-3-fast"
# Fall back to any available model
return allowed_models[0]