Files
my-pal-mcp-server/tools/chat.py

156 lines
6.2 KiB
Python

"""
Chat tool - General development chat and collaborative thinking
"""
from typing import Any, Optional
from mcp.types import TextContent
from pydantic import Field
from config import TEMPERATURE_BALANCED
from prompts import CHAT_PROMPT
from utils import read_files
from .base import BaseTool, ToolRequest
from .models import ToolOutput
class ChatRequest(ToolRequest):
"""Request model for chat tool"""
prompt: str = Field(
...,
description="Your question, topic, or current thinking to discuss with Gemini",
)
files: Optional[list[str]] = Field(
default_factory=list,
description="Optional files for context (must be absolute paths)",
)
class ChatTool(BaseTool):
"""General development chat and collaborative thinking tool"""
def get_name(self) -> str:
return "chat"
def get_description(self) -> str:
return (
"GENERAL CHAT & COLLABORATIVE THINKING - Use Gemini as your thinking partner! "
"Perfect for: bouncing ideas during your own analysis, getting second opinions on your plans, "
"collaborative brainstorming, validating your checklists and approaches, exploring alternatives. "
"Also great for: explanations, comparisons, general development questions. "
"Use this when you want to ask Gemini questions, brainstorm ideas, get opinions, discuss topics, "
"share your thinking, or need explanations about concepts and approaches."
)
def get_input_schema(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "Your question, topic, or current thinking to discuss with Gemini",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Optional files for context (must be absolute paths)",
},
"temperature": {
"type": "number",
"description": "Response creativity (0-1, default 0.5)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
"default": True,
},
"continuation_id": {
"type": "string",
"description": "Thread continuation ID for multi-turn conversations. Can be used to continue conversations across different tools. Only provide this if continuing a previous conversation thread.",
},
},
"required": ["prompt"],
}
def get_system_prompt(self) -> str:
return CHAT_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_BALANCED
def get_request_model(self):
return ChatRequest
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
"""Override execute to check prompt size before processing"""
# First validate request
request_model = self.get_request_model()
request = request_model(**arguments)
# Check prompt size
size_check = self.check_prompt_size(request.prompt)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Continue with normal execution
return await super().execute(arguments)
async def prepare_prompt(self, request: ChatRequest) -> str:
"""Prepare the chat prompt with optional context files"""
# Check for prompt.txt in files
prompt_content, updated_files = self.handle_prompt_file(request.files)
# Use prompt.txt content if available, otherwise use the prompt field
user_content = prompt_content if prompt_content else request.prompt
# Update request files list
if updated_files is not None:
request.files = updated_files
# Add context files if provided (using centralized file handling with filtering)
if request.files:
file_content = self._prepare_file_content_for_prompt(
request.files,
request.continuation_id,
"Context files"
)
if file_content:
user_content = f"{user_content}\n\n=== CONTEXT FILES ===\n{file_content}\n=== END CONTEXT ===="
# Check token limits
self._validate_token_limit(user_content, "Content")
# Add web search instruction if enabled
websearch_instruction = self.get_websearch_instruction(
request.use_websearch,
"""When discussing topics, consider if searches for these would help:
- Documentation for any technologies or concepts mentioned
- Current best practices and patterns
- Recent developments or updates
- Community discussions and solutions""",
)
# Combine system prompt with user content
full_prompt = f"""{self.get_system_prompt()}{websearch_instruction}
=== USER REQUEST ===
{user_content}
=== END REQUEST ===
Please provide a thoughtful, comprehensive response:"""
return full_prompt
def format_response(self, response: str, request: ChatRequest) -> str:
"""Format the chat response with actionable guidance"""
return f"{response}\n\n---\n\n**Claude's Turn:** Evaluate this perspective alongside your analysis to form a comprehensive solution and continue with the user's request and task at hand."