Image processing pipeline added OpenAI GPT-4.1 support Chat tool prompt enhancement Lint and code quality improvements
171 lines
6.6 KiB
Python
171 lines
6.6 KiB
Python
"""OpenAI model provider implementation."""
|
|
|
|
import logging
|
|
from typing import Optional
|
|
|
|
from .base import (
|
|
FixedTemperatureConstraint,
|
|
ModelCapabilities,
|
|
ModelResponse,
|
|
ProviderType,
|
|
RangeTemperatureConstraint,
|
|
)
|
|
from .openai_compatible import OpenAICompatibleProvider
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OpenAIModelProvider(OpenAICompatibleProvider):
|
|
"""Official OpenAI API provider (api.openai.com)."""
|
|
|
|
# Model configurations
|
|
SUPPORTED_MODELS = {
|
|
"o3": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O3 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
},
|
|
"o3-mini": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O3 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
},
|
|
"o3-pro": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O3 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
},
|
|
"o4-mini": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O4 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
},
|
|
"o4-mini-high": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O4 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
},
|
|
"gpt-4.1-2025-04-14": {
|
|
"context_window": 1_000_000, # 1M tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # GPT-4.1 supports vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
},
|
|
# Shorthands
|
|
"mini": "o4-mini", # Default 'mini' to latest mini model
|
|
"o3mini": "o3-mini",
|
|
"o4mini": "o4-mini",
|
|
"o4minihigh": "o4-mini-high",
|
|
"o4minihi": "o4-mini-high",
|
|
"gpt4.1": "gpt-4.1-2025-04-14",
|
|
}
|
|
|
|
def __init__(self, api_key: str, **kwargs):
|
|
"""Initialize OpenAI provider with API key."""
|
|
# Set default OpenAI base URL, allow override for regions/custom endpoints
|
|
kwargs.setdefault("base_url", "https://api.openai.com/v1")
|
|
super().__init__(api_key, **kwargs)
|
|
|
|
def get_capabilities(self, model_name: str) -> ModelCapabilities:
|
|
"""Get capabilities for a specific OpenAI model."""
|
|
# Resolve shorthand
|
|
resolved_name = self._resolve_model_name(model_name)
|
|
|
|
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
|
|
raise ValueError(f"Unsupported OpenAI model: {model_name}")
|
|
|
|
# Check if model is allowed by restrictions
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service()
|
|
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
|
|
raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.")
|
|
|
|
config = self.SUPPORTED_MODELS[resolved_name]
|
|
|
|
# Define temperature constraints per model
|
|
if resolved_name in ["o3", "o3-mini", "o3-pro", "o4-mini", "o4-mini-high"]:
|
|
# O3 and O4 reasoning models only support temperature=1.0
|
|
temp_constraint = FixedTemperatureConstraint(1.0)
|
|
else:
|
|
# Other OpenAI models (including GPT-4.1) support 0.0-2.0 range
|
|
temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7)
|
|
|
|
return ModelCapabilities(
|
|
provider=ProviderType.OPENAI,
|
|
model_name=model_name,
|
|
friendly_name="OpenAI",
|
|
context_window=config["context_window"],
|
|
supports_extended_thinking=config["supports_extended_thinking"],
|
|
supports_system_prompts=True,
|
|
supports_streaming=True,
|
|
supports_function_calling=True,
|
|
supports_images=config.get("supports_images", False),
|
|
max_image_size_mb=config.get("max_image_size_mb", 0.0),
|
|
temperature_constraint=temp_constraint,
|
|
)
|
|
|
|
def get_provider_type(self) -> ProviderType:
|
|
"""Get the provider type."""
|
|
return ProviderType.OPENAI
|
|
|
|
def validate_model_name(self, model_name: str) -> bool:
|
|
"""Validate if the model name is supported and allowed."""
|
|
resolved_name = self._resolve_model_name(model_name)
|
|
|
|
# First check if model is supported
|
|
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
|
|
return False
|
|
|
|
# Then check if model is allowed by restrictions
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service()
|
|
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
|
|
logger.debug(f"OpenAI model '{model_name}' -> '{resolved_name}' blocked by restrictions")
|
|
return False
|
|
|
|
return True
|
|
|
|
def generate_content(
|
|
self,
|
|
prompt: str,
|
|
model_name: str,
|
|
system_prompt: Optional[str] = None,
|
|
temperature: float = 0.7,
|
|
max_output_tokens: Optional[int] = None,
|
|
**kwargs,
|
|
) -> ModelResponse:
|
|
"""Generate content using OpenAI API with proper model name resolution."""
|
|
# Resolve model alias before making API call
|
|
resolved_model_name = self._resolve_model_name(model_name)
|
|
|
|
# Call parent implementation with resolved model name
|
|
return super().generate_content(
|
|
prompt=prompt,
|
|
model_name=resolved_model_name,
|
|
system_prompt=system_prompt,
|
|
temperature=temperature,
|
|
max_output_tokens=max_output_tokens,
|
|
**kwargs,
|
|
)
|
|
|
|
def supports_thinking_mode(self, model_name: str) -> bool:
|
|
"""Check if the model supports extended thinking mode."""
|
|
# Currently no OpenAI models support extended thinking
|
|
# This may change with future O3 models
|
|
return False
|
|
|
|
def _resolve_model_name(self, model_name: str) -> str:
|
|
"""Resolve model shorthand to full name."""
|
|
# Check if it's a shorthand
|
|
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
|
|
if isinstance(shorthand_value, str):
|
|
return shorthand_value
|
|
return model_name
|