209 lines
8.0 KiB
Python
209 lines
8.0 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
O3 Model Selection Test
|
|
|
|
Tests that O3 models are properly selected and used when explicitly specified,
|
|
regardless of the default model configuration (even when set to auto).
|
|
Validates model selection via Docker logs.
|
|
"""
|
|
|
|
import datetime
|
|
import subprocess
|
|
|
|
from .base_test import BaseSimulatorTest
|
|
|
|
|
|
class O3ModelSelectionTest(BaseSimulatorTest):
|
|
"""Test O3 model selection and usage"""
|
|
|
|
@property
|
|
def test_name(self) -> str:
|
|
return "o3_model_selection"
|
|
|
|
@property
|
|
def test_description(self) -> str:
|
|
return "O3 model selection and usage validation"
|
|
|
|
def get_recent_server_logs(self) -> str:
|
|
"""Get recent server logs from the log file directly"""
|
|
try:
|
|
# Read logs directly from the log file - more reliable than docker logs --since
|
|
cmd = ["docker", "exec", self.container_name, "tail", "-n", "200", "/tmp/mcp_server.log"]
|
|
result = subprocess.run(cmd, capture_output=True, text=True)
|
|
|
|
if result.returncode == 0:
|
|
return result.stdout
|
|
else:
|
|
self.logger.warning(f"Failed to read server logs: {result.stderr}")
|
|
return ""
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to get server logs: {e}")
|
|
return ""
|
|
|
|
def run_test(self) -> bool:
|
|
"""Test O3 model selection and usage"""
|
|
try:
|
|
self.logger.info(" Test: O3 model selection and usage validation")
|
|
|
|
# Setup test files for later use
|
|
self.setup_test_files()
|
|
|
|
# Get timestamp for log filtering
|
|
datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
|
|
|
# Test 1: Explicit O3 model selection
|
|
self.logger.info(" 1: Testing explicit O3 model selection")
|
|
|
|
response1, _ = self.call_mcp_tool(
|
|
"chat",
|
|
{
|
|
"prompt": "Simple test: What is 2 + 2? Just give a brief answer.",
|
|
"model": "o3",
|
|
"temperature": 1.0, # O3 only supports default temperature of 1.0
|
|
},
|
|
)
|
|
|
|
if not response1:
|
|
self.logger.error(" ❌ O3 model test failed")
|
|
return False
|
|
|
|
self.logger.info(" ✅ O3 model call completed")
|
|
|
|
# Test 2: Explicit O3-mini model selection
|
|
self.logger.info(" 2: Testing explicit O3-mini model selection")
|
|
|
|
response2, _ = self.call_mcp_tool(
|
|
"chat",
|
|
{
|
|
"prompt": "Simple test: What is 3 + 3? Just give a brief answer.",
|
|
"model": "o3-mini",
|
|
"temperature": 1.0, # O3-mini only supports default temperature of 1.0
|
|
},
|
|
)
|
|
|
|
if not response2:
|
|
self.logger.error(" ❌ O3-mini model test failed")
|
|
return False
|
|
|
|
self.logger.info(" ✅ O3-mini model call completed")
|
|
|
|
# Test 3: Another tool with O3 to ensure it works across tools
|
|
self.logger.info(" 3: Testing O3 with different tool (codereview)")
|
|
|
|
# Create a simple test file
|
|
test_code = """def add(a, b):
|
|
return a + b
|
|
|
|
def multiply(x, y):
|
|
return x * y
|
|
"""
|
|
test_file = self.create_additional_test_file("simple_math.py", test_code)
|
|
|
|
response3, _ = self.call_mcp_tool(
|
|
"codereview",
|
|
{
|
|
"files": [test_file],
|
|
"prompt": "Quick review of this simple code",
|
|
"model": "o3",
|
|
"temperature": 1.0, # O3 only supports default temperature of 1.0
|
|
},
|
|
)
|
|
|
|
if not response3:
|
|
self.logger.error(" ❌ O3 with codereview tool failed")
|
|
return False
|
|
|
|
self.logger.info(" ✅ O3 with codereview tool completed")
|
|
|
|
# Validate model usage from server logs
|
|
self.logger.info(" 4: Validating model usage in logs")
|
|
logs = self.get_recent_server_logs()
|
|
|
|
# Check for OpenAI API calls (this proves O3 models are being used)
|
|
openai_api_logs = [line for line in logs.split("\n") if "Sending request to openai API for" in line]
|
|
|
|
# Check for OpenAI model usage logs
|
|
openai_model_logs = [
|
|
line for line in logs.split("\n") if "Using model:" in line and "openai provider" in line
|
|
]
|
|
|
|
# Check for successful OpenAI responses
|
|
openai_response_logs = [
|
|
line for line in logs.split("\n") if "openai provider" in line and "Using model:" in line
|
|
]
|
|
|
|
# Check that we have both chat and codereview tool calls to OpenAI
|
|
chat_openai_logs = [line for line in logs.split("\n") if "Sending request to openai API for chat" in line]
|
|
|
|
codereview_openai_logs = [
|
|
line for line in logs.split("\n") if "Sending request to openai API for codereview" in line
|
|
]
|
|
|
|
# Validation criteria - we expect 3 OpenAI calls (2 chat + 1 codereview)
|
|
openai_api_called = len(openai_api_logs) >= 3 # Should see 3 OpenAI API calls
|
|
openai_model_usage = len(openai_model_logs) >= 3 # Should see 3 model usage logs
|
|
openai_responses_received = len(openai_response_logs) >= 3 # Should see 3 responses
|
|
chat_calls_to_openai = len(chat_openai_logs) >= 2 # Should see 2 chat calls (o3 + o3-mini)
|
|
codereview_calls_to_openai = len(codereview_openai_logs) >= 1 # Should see 1 codereview call
|
|
|
|
self.logger.info(f" OpenAI API call logs: {len(openai_api_logs)}")
|
|
self.logger.info(f" OpenAI model usage logs: {len(openai_model_logs)}")
|
|
self.logger.info(f" OpenAI response logs: {len(openai_response_logs)}")
|
|
self.logger.info(f" Chat calls to OpenAI: {len(chat_openai_logs)}")
|
|
self.logger.info(f" Codereview calls to OpenAI: {len(codereview_openai_logs)}")
|
|
|
|
# Log sample evidence for debugging
|
|
if self.verbose and openai_api_logs:
|
|
self.logger.debug(" 📋 Sample OpenAI API logs:")
|
|
for log in openai_api_logs[:5]:
|
|
self.logger.debug(f" {log}")
|
|
|
|
if self.verbose and chat_openai_logs:
|
|
self.logger.debug(" 📋 Sample chat OpenAI logs:")
|
|
for log in chat_openai_logs[:3]:
|
|
self.logger.debug(f" {log}")
|
|
|
|
# Success criteria
|
|
success_criteria = [
|
|
("OpenAI API calls made", openai_api_called),
|
|
("OpenAI model usage logged", openai_model_usage),
|
|
("OpenAI responses received", openai_responses_received),
|
|
("Chat tool used OpenAI", chat_calls_to_openai),
|
|
("Codereview tool used OpenAI", codereview_calls_to_openai),
|
|
]
|
|
|
|
passed_criteria = sum(1 for _, passed in success_criteria if passed)
|
|
self.logger.info(f" Success criteria met: {passed_criteria}/{len(success_criteria)}")
|
|
|
|
for criterion, passed in success_criteria:
|
|
status = "✅" if passed else "❌"
|
|
self.logger.info(f" {status} {criterion}")
|
|
|
|
if passed_criteria >= 3: # At least 3 out of 4 criteria
|
|
self.logger.info(" ✅ O3 model selection validation passed")
|
|
return True
|
|
else:
|
|
self.logger.error(" ❌ O3 model selection validation failed")
|
|
return False
|
|
|
|
except Exception as e:
|
|
self.logger.error(f"O3 model selection test failed: {e}")
|
|
return False
|
|
finally:
|
|
self.cleanup_test_files()
|
|
|
|
|
|
def main():
|
|
"""Run the O3 model selection tests"""
|
|
import sys
|
|
|
|
verbose = "--verbose" in sys.argv or "-v" in sys.argv
|
|
test = O3ModelSelectionTest(verbose=verbose)
|
|
|
|
success = test.run_test()
|
|
sys.exit(0 if success else 1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|