This commit addresses several critical issues and improvements: 🔧 Critical Fixes: - Fixed conversation history not being included when using continuation_id in AI-to-AI conversations - Fixed test mock targeting issues preventing proper conversation memory validation - Fixed Docker debug logging functionality with Gemini tools 🐛 Bug Fixes: - Docker compose configuration for proper container command execution - Test mock import targeting from utils.conversation_memory.* to tools.base.* - Version bump to 3.1.0 reflecting significant improvements 🚀 Improvements: - Enhanced Docker environment configuration with comprehensive logging setup - Added cross-tool continuation documentation and examples in README - Improved error handling and validation across all tools - Better logging configuration with LOG_LEVEL environment variable support - Enhanced conversation memory system documentation 🧪 Testing: - Added comprehensive conversation history bug fix tests - Added cross-tool continuation functionality tests - All 132 tests now pass with proper conversation history validation - Improved test coverage for AI-to-AI conversation threading ✨ Code Quality: - Applied black, isort, and ruff formatting across entire codebase - Enhanced inline documentation for conversation memory system - Cleaned up temporary files and improved repository hygiene - Better test descriptions and coverage for critical functionality 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
197 lines
7.7 KiB
Python
197 lines
7.7 KiB
Python
"""
|
|
Analyze tool - General-purpose code and file analysis
|
|
"""
|
|
|
|
from typing import Any, Optional
|
|
|
|
from mcp.types import TextContent
|
|
from pydantic import Field
|
|
|
|
from config import TEMPERATURE_ANALYTICAL
|
|
from prompts import ANALYZE_PROMPT
|
|
from utils import read_files
|
|
|
|
from .base import BaseTool, ToolRequest
|
|
from .models import ToolOutput
|
|
|
|
|
|
class AnalyzeRequest(ToolRequest):
|
|
"""Request model for analyze tool"""
|
|
|
|
files: list[str] = Field(..., description="Files or directories to analyze (must be absolute paths)")
|
|
question: str = Field(..., description="What to analyze or look for")
|
|
analysis_type: Optional[str] = Field(
|
|
None,
|
|
description="Type of analysis: architecture|performance|security|quality|general",
|
|
)
|
|
output_format: Optional[str] = Field("detailed", description="Output format: summary|detailed|actionable")
|
|
|
|
|
|
class AnalyzeTool(BaseTool):
|
|
"""General-purpose file and code analysis tool"""
|
|
|
|
def get_name(self) -> str:
|
|
return "analyze"
|
|
|
|
def get_description(self) -> str:
|
|
return (
|
|
"ANALYZE FILES & CODE - General-purpose analysis for understanding code. "
|
|
"Supports both individual files and entire directories. "
|
|
"Use this when you need to analyze files, examine code, or understand specific aspects of a codebase. "
|
|
"Perfect for: codebase exploration, dependency analysis, pattern detection. "
|
|
"Always uses file paths for clean terminal output."
|
|
)
|
|
|
|
def get_input_schema(self) -> dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"files": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "Files or directories to analyze (must be absolute paths)",
|
|
},
|
|
"question": {
|
|
"type": "string",
|
|
"description": "What to analyze or look for",
|
|
},
|
|
"analysis_type": {
|
|
"type": "string",
|
|
"enum": [
|
|
"architecture",
|
|
"performance",
|
|
"security",
|
|
"quality",
|
|
"general",
|
|
],
|
|
"description": "Type of analysis to perform",
|
|
},
|
|
"output_format": {
|
|
"type": "string",
|
|
"enum": ["summary", "detailed", "actionable"],
|
|
"default": "detailed",
|
|
"description": "How to format the output",
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Temperature (0-1, default 0.2)",
|
|
"minimum": 0,
|
|
"maximum": 1,
|
|
},
|
|
"thinking_mode": {
|
|
"type": "string",
|
|
"enum": ["minimal", "low", "medium", "high", "max"],
|
|
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
|
|
},
|
|
"use_websearch": {
|
|
"type": "boolean",
|
|
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
|
|
"default": True,
|
|
},
|
|
"continuation_id": {
|
|
"type": "string",
|
|
"description": "Thread continuation ID for multi-turn conversations. Can be used to continue conversations across different tools. Only provide this if continuing a previous conversation thread.",
|
|
},
|
|
},
|
|
"required": ["files", "question"],
|
|
}
|
|
|
|
def get_system_prompt(self) -> str:
|
|
return ANALYZE_PROMPT
|
|
|
|
def get_default_temperature(self) -> float:
|
|
return TEMPERATURE_ANALYTICAL
|
|
|
|
def get_request_model(self):
|
|
return AnalyzeRequest
|
|
|
|
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
|
|
"""Override execute to check question size before processing"""
|
|
# First validate request
|
|
request_model = self.get_request_model()
|
|
request = request_model(**arguments)
|
|
|
|
# Check question size
|
|
size_check = self.check_prompt_size(request.question)
|
|
if size_check:
|
|
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
|
|
|
|
# Continue with normal execution
|
|
return await super().execute(arguments)
|
|
|
|
async def prepare_prompt(self, request: AnalyzeRequest) -> str:
|
|
"""Prepare the analysis prompt"""
|
|
# Check for prompt.txt in files
|
|
prompt_content, updated_files = self.handle_prompt_file(request.files)
|
|
|
|
# If prompt.txt was found, use it as the question
|
|
if prompt_content:
|
|
request.question = prompt_content
|
|
|
|
# Update request files list
|
|
if updated_files is not None:
|
|
request.files = updated_files
|
|
|
|
# Read all files
|
|
file_content = read_files(request.files)
|
|
|
|
# Check token limits
|
|
self._validate_token_limit(file_content, "Files")
|
|
|
|
# Build analysis instructions
|
|
analysis_focus = []
|
|
|
|
if request.analysis_type:
|
|
type_focus = {
|
|
"architecture": "Focus on architectural patterns, structure, and design decisions",
|
|
"performance": "Focus on performance characteristics and optimization opportunities",
|
|
"security": "Focus on security implications and potential vulnerabilities",
|
|
"quality": "Focus on code quality, maintainability, and best practices",
|
|
"general": "Provide a comprehensive general analysis",
|
|
}
|
|
analysis_focus.append(type_focus.get(request.analysis_type, ""))
|
|
|
|
if request.output_format == "summary":
|
|
analysis_focus.append("Provide a concise summary of key findings")
|
|
elif request.output_format == "actionable":
|
|
analysis_focus.append("Focus on actionable insights and specific recommendations")
|
|
|
|
focus_instruction = "\n".join(analysis_focus) if analysis_focus else ""
|
|
|
|
# Add web search instruction if enabled
|
|
websearch_instruction = self.get_websearch_instruction(
|
|
request.use_websearch,
|
|
"""When analyzing code, consider if searches for these would help:
|
|
- Documentation for technologies or frameworks found in the code
|
|
- Best practices and design patterns relevant to the analysis
|
|
- API references and usage examples
|
|
- Known issues or solutions for patterns you identify""",
|
|
)
|
|
|
|
# Combine everything
|
|
full_prompt = f"""{self.get_system_prompt()}
|
|
|
|
{focus_instruction}{websearch_instruction}
|
|
|
|
=== USER QUESTION ===
|
|
{request.question}
|
|
=== END QUESTION ===
|
|
|
|
=== FILES TO ANALYZE ===
|
|
{file_content}
|
|
=== END FILES ===
|
|
|
|
Please analyze these files to answer the user's question."""
|
|
|
|
return full_prompt
|
|
|
|
def format_response(self, response: str, request: AnalyzeRequest) -> str:
|
|
"""Format the analysis response"""
|
|
header = f"Analysis: {request.question[:50]}..."
|
|
if request.analysis_type:
|
|
header = f"{request.analysis_type.upper()} Analysis"
|
|
|
|
summary_text = f"Analyzed {len(request.files)} file(s)"
|
|
|
|
return f"{header}\n{summary_text}\n{'=' * 50}\n\n{response}\n\n---\n\n**Next Steps:** Consider if this analysis reveals areas needing deeper investigation, additional context, or specific implementation details."
|