Fix for: https://github.com/BeehiveInnovations/zen-mcp-server/issues/102 - Removed centralized MODEL_CAPABILITIES_DESC from config.py - Added model descriptions to individual provider SUPPORTED_MODELS - Updated _get_available_models() to use ModelProviderRegistry for API key filtering - Added comprehensive test suite validating bug reproduction and fix
188 lines
7.0 KiB
Python
188 lines
7.0 KiB
Python
"""X.AI (GROK) model provider implementation."""
|
|
|
|
import logging
|
|
from typing import Optional
|
|
|
|
from .base import (
|
|
ModelCapabilities,
|
|
ModelResponse,
|
|
ProviderType,
|
|
RangeTemperatureConstraint,
|
|
)
|
|
from .openai_compatible import OpenAICompatibleProvider
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class XAIModelProvider(OpenAICompatibleProvider):
|
|
"""X.AI GROK API provider (api.x.ai)."""
|
|
|
|
FRIENDLY_NAME = "X.AI"
|
|
|
|
# Model configurations
|
|
SUPPORTED_MODELS = {
|
|
"grok-3": {
|
|
"context_window": 131_072, # 131K tokens
|
|
"supports_extended_thinking": False,
|
|
"description": "GROK-3 (131K context) - Advanced reasoning model from X.AI, excellent for complex analysis",
|
|
},
|
|
"grok-3-fast": {
|
|
"context_window": 131_072, # 131K tokens
|
|
"supports_extended_thinking": False,
|
|
"description": "GROK-3 Fast (131K context) - Higher performance variant, faster processing but more expensive",
|
|
},
|
|
# Shorthands for convenience
|
|
"grok": "grok-3", # Default to grok-3
|
|
"grok3": "grok-3",
|
|
"grok3fast": "grok-3-fast",
|
|
"grokfast": "grok-3-fast",
|
|
}
|
|
|
|
def __init__(self, api_key: str, **kwargs):
|
|
"""Initialize X.AI provider with API key."""
|
|
# Set X.AI base URL
|
|
kwargs.setdefault("base_url", "https://api.x.ai/v1")
|
|
super().__init__(api_key, **kwargs)
|
|
|
|
def get_capabilities(self, model_name: str) -> ModelCapabilities:
|
|
"""Get capabilities for a specific X.AI model."""
|
|
# Resolve shorthand
|
|
resolved_name = self._resolve_model_name(model_name)
|
|
|
|
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
|
|
raise ValueError(f"Unsupported X.AI model: {model_name}")
|
|
|
|
# Check if model is allowed by restrictions
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service()
|
|
if not restriction_service.is_allowed(ProviderType.XAI, resolved_name, model_name):
|
|
raise ValueError(f"X.AI model '{model_name}' is not allowed by restriction policy.")
|
|
|
|
config = self.SUPPORTED_MODELS[resolved_name]
|
|
|
|
# Define temperature constraints for GROK models
|
|
# GROK supports the standard OpenAI temperature range
|
|
temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7)
|
|
|
|
return ModelCapabilities(
|
|
provider=ProviderType.XAI,
|
|
model_name=resolved_name,
|
|
friendly_name=self.FRIENDLY_NAME,
|
|
context_window=config["context_window"],
|
|
supports_extended_thinking=config["supports_extended_thinking"],
|
|
supports_system_prompts=True,
|
|
supports_streaming=True,
|
|
supports_function_calling=True,
|
|
temperature_constraint=temp_constraint,
|
|
)
|
|
|
|
def get_provider_type(self) -> ProviderType:
|
|
"""Get the provider type."""
|
|
return ProviderType.XAI
|
|
|
|
def validate_model_name(self, model_name: str) -> bool:
|
|
"""Validate if the model name is supported and allowed."""
|
|
resolved_name = self._resolve_model_name(model_name)
|
|
|
|
# First check if model is supported
|
|
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
|
|
return False
|
|
|
|
# Then check if model is allowed by restrictions
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service()
|
|
if not restriction_service.is_allowed(ProviderType.XAI, resolved_name, model_name):
|
|
logger.debug(f"X.AI model '{model_name}' -> '{resolved_name}' blocked by restrictions")
|
|
return False
|
|
|
|
return True
|
|
|
|
def generate_content(
|
|
self,
|
|
prompt: str,
|
|
model_name: str,
|
|
system_prompt: Optional[str] = None,
|
|
temperature: float = 0.7,
|
|
max_output_tokens: Optional[int] = None,
|
|
**kwargs,
|
|
) -> ModelResponse:
|
|
"""Generate content using X.AI API with proper model name resolution."""
|
|
# Resolve model alias before making API call
|
|
resolved_model_name = self._resolve_model_name(model_name)
|
|
|
|
# Call parent implementation with resolved model name
|
|
return super().generate_content(
|
|
prompt=prompt,
|
|
model_name=resolved_model_name,
|
|
system_prompt=system_prompt,
|
|
temperature=temperature,
|
|
max_output_tokens=max_output_tokens,
|
|
**kwargs,
|
|
)
|
|
|
|
def supports_thinking_mode(self, model_name: str) -> bool:
|
|
"""Check if the model supports extended thinking mode."""
|
|
# Currently GROK models do not support extended thinking
|
|
# This may change with future GROK model releases
|
|
return False
|
|
|
|
def list_models(self, respect_restrictions: bool = True) -> list[str]:
|
|
"""Return a list of model names supported by this provider.
|
|
|
|
Args:
|
|
respect_restrictions: Whether to apply provider-specific restriction logic.
|
|
|
|
Returns:
|
|
List of model names available from this provider
|
|
"""
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service() if respect_restrictions else None
|
|
models = []
|
|
|
|
for model_name, config in self.SUPPORTED_MODELS.items():
|
|
# Handle both base models (dict configs) and aliases (string values)
|
|
if isinstance(config, str):
|
|
# This is an alias - check if the target model would be allowed
|
|
target_model = config
|
|
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), target_model):
|
|
continue
|
|
# Allow the alias
|
|
models.append(model_name)
|
|
else:
|
|
# This is a base model with config dict
|
|
# Check restrictions if enabled
|
|
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name):
|
|
continue
|
|
models.append(model_name)
|
|
|
|
return models
|
|
|
|
def list_all_known_models(self) -> list[str]:
|
|
"""Return all model names known by this provider, including alias targets.
|
|
|
|
Returns:
|
|
List of all model names and alias targets known by this provider
|
|
"""
|
|
all_models = set()
|
|
|
|
for model_name, config in self.SUPPORTED_MODELS.items():
|
|
# Add the model name itself
|
|
all_models.add(model_name.lower())
|
|
|
|
# If it's an alias (string value), add the target model too
|
|
if isinstance(config, str):
|
|
all_models.add(config.lower())
|
|
|
|
return list(all_models)
|
|
|
|
def _resolve_model_name(self, model_name: str) -> str:
|
|
"""Resolve model shorthand to full name."""
|
|
# Check if it's a shorthand
|
|
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
|
|
if isinstance(shorthand_value, str):
|
|
return shorthand_value
|
|
return model_name
|