Files
my-pal-mcp-server/providers/openai_provider.py
Fahad 9079d06941 Fix for: https://github.com/BeehiveInnovations/zen-mcp-server/issues/101
Fix for: https://github.com/BeehiveInnovations/zen-mcp-server/issues/102

- Removed centralized MODEL_CAPABILITIES_DESC from config.py
- Added model descriptions to individual provider SUPPORTED_MODELS
- Updated _get_available_models() to use ModelProviderRegistry for API key filtering
- Added comprehensive test suite validating bug reproduction and fix
2025-06-21 15:07:52 +04:00

238 lines
10 KiB
Python

"""OpenAI model provider implementation."""
import logging
from typing import Optional
from .base import (
ModelCapabilities,
ModelResponse,
ProviderType,
create_temperature_constraint,
)
from .openai_compatible import OpenAICompatibleProvider
logger = logging.getLogger(__name__)
class OpenAIModelProvider(OpenAICompatibleProvider):
"""Official OpenAI API provider (api.openai.com)."""
# Model configurations
SUPPORTED_MODELS = {
"o3": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
"supports_images": True, # O3 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
"supports_temperature": False, # O3 models don't accept temperature parameter
"temperature_constraint": "fixed", # Fixed at 1.0
"description": "Strong reasoning (200K context) - Logical problems, code generation, systematic analysis",
},
"o3-mini": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
"supports_images": True, # O3 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
"supports_temperature": False, # O3 models don't accept temperature parameter
"temperature_constraint": "fixed", # Fixed at 1.0
"description": "Fast O3 variant (200K context) - Balanced performance/speed, moderate complexity",
},
"o3-pro-2025-06-10": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
"supports_images": True, # O3 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
"supports_temperature": False, # O3 models don't accept temperature parameter
"temperature_constraint": "fixed", # Fixed at 1.0
"description": "Professional-grade reasoning (200K context) - EXTREMELY EXPENSIVE: Only for the most complex problems requiring universe-scale complexity analysis OR when the user explicitly asks for this model. Use sparingly for critical architectural decisions or exceptionally complex debugging that other models cannot handle.",
},
# Aliases
"o3-pro": "o3-pro-2025-06-10",
"o4-mini": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
"supports_images": True, # O4 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
"supports_temperature": False, # O4 models don't accept temperature parameter
"temperature_constraint": "fixed", # Fixed at 1.0
"description": "Latest reasoning model (200K context) - Optimized for shorter contexts, rapid reasoning",
},
"o4-mini-high": {
"context_window": 200_000, # 200K tokens
"supports_extended_thinking": False,
"supports_images": True, # O4 models support vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
"supports_temperature": False, # O4 models don't accept temperature parameter
"temperature_constraint": "fixed", # Fixed at 1.0
"description": "Enhanced O4 mini (200K context) - Higher reasoning effort for complex tasks",
},
"gpt-4.1-2025-04-14": {
"context_window": 1_000_000, # 1M tokens
"supports_extended_thinking": False,
"supports_images": True, # GPT-4.1 supports vision
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
"supports_temperature": True, # Regular models accept temperature parameter
"temperature_constraint": "range", # 0.0-2.0 range
"description": "GPT-4.1 (1M context) - Advanced reasoning model with large context window",
},
# Shorthands
"mini": "o4-mini", # Default 'mini' to latest mini model
"o3mini": "o3-mini",
"o4mini": "o4-mini",
"o4minihigh": "o4-mini-high",
"o4minihi": "o4-mini-high",
"gpt4.1": "gpt-4.1-2025-04-14",
}
def __init__(self, api_key: str, **kwargs):
"""Initialize OpenAI provider with API key."""
# Set default OpenAI base URL, allow override for regions/custom endpoints
kwargs.setdefault("base_url", "https://api.openai.com/v1")
super().__init__(api_key, **kwargs)
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific OpenAI model."""
# Resolve shorthand
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
raise ValueError(f"Unsupported OpenAI model: {model_name}")
# Check if model is allowed by restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.")
config = self.SUPPORTED_MODELS[resolved_name]
# Get temperature constraints and support from configuration
supports_temperature = config.get("supports_temperature", True) # Default to True for backward compatibility
temp_constraint_type = config.get("temperature_constraint", "range") # Default to range
temp_constraint = create_temperature_constraint(temp_constraint_type)
return ModelCapabilities(
provider=ProviderType.OPENAI,
model_name=model_name,
friendly_name="OpenAI",
context_window=config["context_window"],
supports_extended_thinking=config["supports_extended_thinking"],
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
supports_images=config.get("supports_images", False),
max_image_size_mb=config.get("max_image_size_mb", 0.0),
supports_temperature=supports_temperature,
temperature_constraint=temp_constraint,
)
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.OPENAI
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported and allowed."""
resolved_name = self._resolve_model_name(model_name)
# First check if model is supported
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
return False
# Then check if model is allowed by restrictions
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
logger.debug(f"OpenAI model '{model_name}' -> '{resolved_name}' blocked by restrictions")
return False
return True
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using OpenAI API with proper model name resolution."""
# Resolve model alias before making API call
resolved_model_name = self._resolve_model_name(model_name)
# Call parent implementation with resolved model name
return super().generate_content(
prompt=prompt,
model_name=resolved_model_name,
system_prompt=system_prompt,
temperature=temperature,
max_output_tokens=max_output_tokens,
**kwargs,
)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
# Currently no OpenAI models support extended thinking
# This may change with future O3 models
return False
def list_models(self, respect_restrictions: bool = True) -> list[str]:
"""Return a list of model names supported by this provider.
Args:
respect_restrictions: Whether to apply provider-specific restriction logic.
Returns:
List of model names available from this provider
"""
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service() if respect_restrictions else None
models = []
for model_name, config in self.SUPPORTED_MODELS.items():
# Handle both base models (dict configs) and aliases (string values)
if isinstance(config, str):
# This is an alias - check if the target model would be allowed
target_model = config
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), target_model):
continue
# Allow the alias
models.append(model_name)
else:
# This is a base model with config dict
# Check restrictions if enabled
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name):
continue
models.append(model_name)
return models
def list_all_known_models(self) -> list[str]:
"""Return all model names known by this provider, including alias targets.
Returns:
List of all model names and alias targets known by this provider
"""
all_models = set()
for model_name, config in self.SUPPORTED_MODELS.items():
# Add the model name itself
all_models.add(model_name.lower())
# If it's an alias (string value), add the target model too
if isinstance(config, str):
all_models.add(config.lower())
return list(all_models)
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model shorthand to full name."""
# Check if it's a shorthand
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
if isinstance(shorthand_value, str):
return shorthand_value
return model_name