Fix for: https://github.com/BeehiveInnovations/zen-mcp-server/issues/102 - Removed centralized MODEL_CAPABILITIES_DESC from config.py - Added model descriptions to individual provider SUPPORTED_MODELS - Updated _get_available_models() to use ModelProviderRegistry for API key filtering - Added comprehensive test suite validating bug reproduction and fix
238 lines
10 KiB
Python
238 lines
10 KiB
Python
"""OpenAI model provider implementation."""
|
|
|
|
import logging
|
|
from typing import Optional
|
|
|
|
from .base import (
|
|
ModelCapabilities,
|
|
ModelResponse,
|
|
ProviderType,
|
|
create_temperature_constraint,
|
|
)
|
|
from .openai_compatible import OpenAICompatibleProvider
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OpenAIModelProvider(OpenAICompatibleProvider):
|
|
"""Official OpenAI API provider (api.openai.com)."""
|
|
|
|
# Model configurations
|
|
SUPPORTED_MODELS = {
|
|
"o3": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O3 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
"supports_temperature": False, # O3 models don't accept temperature parameter
|
|
"temperature_constraint": "fixed", # Fixed at 1.0
|
|
"description": "Strong reasoning (200K context) - Logical problems, code generation, systematic analysis",
|
|
},
|
|
"o3-mini": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O3 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
"supports_temperature": False, # O3 models don't accept temperature parameter
|
|
"temperature_constraint": "fixed", # Fixed at 1.0
|
|
"description": "Fast O3 variant (200K context) - Balanced performance/speed, moderate complexity",
|
|
},
|
|
"o3-pro-2025-06-10": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O3 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
"supports_temperature": False, # O3 models don't accept temperature parameter
|
|
"temperature_constraint": "fixed", # Fixed at 1.0
|
|
"description": "Professional-grade reasoning (200K context) - EXTREMELY EXPENSIVE: Only for the most complex problems requiring universe-scale complexity analysis OR when the user explicitly asks for this model. Use sparingly for critical architectural decisions or exceptionally complex debugging that other models cannot handle.",
|
|
},
|
|
# Aliases
|
|
"o3-pro": "o3-pro-2025-06-10",
|
|
"o4-mini": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O4 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
"supports_temperature": False, # O4 models don't accept temperature parameter
|
|
"temperature_constraint": "fixed", # Fixed at 1.0
|
|
"description": "Latest reasoning model (200K context) - Optimized for shorter contexts, rapid reasoning",
|
|
},
|
|
"o4-mini-high": {
|
|
"context_window": 200_000, # 200K tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # O4 models support vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
"supports_temperature": False, # O4 models don't accept temperature parameter
|
|
"temperature_constraint": "fixed", # Fixed at 1.0
|
|
"description": "Enhanced O4 mini (200K context) - Higher reasoning effort for complex tasks",
|
|
},
|
|
"gpt-4.1-2025-04-14": {
|
|
"context_window": 1_000_000, # 1M tokens
|
|
"supports_extended_thinking": False,
|
|
"supports_images": True, # GPT-4.1 supports vision
|
|
"max_image_size_mb": 20.0, # 20MB per OpenAI docs
|
|
"supports_temperature": True, # Regular models accept temperature parameter
|
|
"temperature_constraint": "range", # 0.0-2.0 range
|
|
"description": "GPT-4.1 (1M context) - Advanced reasoning model with large context window",
|
|
},
|
|
# Shorthands
|
|
"mini": "o4-mini", # Default 'mini' to latest mini model
|
|
"o3mini": "o3-mini",
|
|
"o4mini": "o4-mini",
|
|
"o4minihigh": "o4-mini-high",
|
|
"o4minihi": "o4-mini-high",
|
|
"gpt4.1": "gpt-4.1-2025-04-14",
|
|
}
|
|
|
|
def __init__(self, api_key: str, **kwargs):
|
|
"""Initialize OpenAI provider with API key."""
|
|
# Set default OpenAI base URL, allow override for regions/custom endpoints
|
|
kwargs.setdefault("base_url", "https://api.openai.com/v1")
|
|
super().__init__(api_key, **kwargs)
|
|
|
|
def get_capabilities(self, model_name: str) -> ModelCapabilities:
|
|
"""Get capabilities for a specific OpenAI model."""
|
|
# Resolve shorthand
|
|
resolved_name = self._resolve_model_name(model_name)
|
|
|
|
if resolved_name not in self.SUPPORTED_MODELS or isinstance(self.SUPPORTED_MODELS[resolved_name], str):
|
|
raise ValueError(f"Unsupported OpenAI model: {model_name}")
|
|
|
|
# Check if model is allowed by restrictions
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service()
|
|
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
|
|
raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.")
|
|
|
|
config = self.SUPPORTED_MODELS[resolved_name]
|
|
|
|
# Get temperature constraints and support from configuration
|
|
supports_temperature = config.get("supports_temperature", True) # Default to True for backward compatibility
|
|
temp_constraint_type = config.get("temperature_constraint", "range") # Default to range
|
|
temp_constraint = create_temperature_constraint(temp_constraint_type)
|
|
|
|
return ModelCapabilities(
|
|
provider=ProviderType.OPENAI,
|
|
model_name=model_name,
|
|
friendly_name="OpenAI",
|
|
context_window=config["context_window"],
|
|
supports_extended_thinking=config["supports_extended_thinking"],
|
|
supports_system_prompts=True,
|
|
supports_streaming=True,
|
|
supports_function_calling=True,
|
|
supports_images=config.get("supports_images", False),
|
|
max_image_size_mb=config.get("max_image_size_mb", 0.0),
|
|
supports_temperature=supports_temperature,
|
|
temperature_constraint=temp_constraint,
|
|
)
|
|
|
|
def get_provider_type(self) -> ProviderType:
|
|
"""Get the provider type."""
|
|
return ProviderType.OPENAI
|
|
|
|
def validate_model_name(self, model_name: str) -> bool:
|
|
"""Validate if the model name is supported and allowed."""
|
|
resolved_name = self._resolve_model_name(model_name)
|
|
|
|
# First check if model is supported
|
|
if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict):
|
|
return False
|
|
|
|
# Then check if model is allowed by restrictions
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service()
|
|
if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name):
|
|
logger.debug(f"OpenAI model '{model_name}' -> '{resolved_name}' blocked by restrictions")
|
|
return False
|
|
|
|
return True
|
|
|
|
def generate_content(
|
|
self,
|
|
prompt: str,
|
|
model_name: str,
|
|
system_prompt: Optional[str] = None,
|
|
temperature: float = 0.7,
|
|
max_output_tokens: Optional[int] = None,
|
|
**kwargs,
|
|
) -> ModelResponse:
|
|
"""Generate content using OpenAI API with proper model name resolution."""
|
|
# Resolve model alias before making API call
|
|
resolved_model_name = self._resolve_model_name(model_name)
|
|
|
|
# Call parent implementation with resolved model name
|
|
return super().generate_content(
|
|
prompt=prompt,
|
|
model_name=resolved_model_name,
|
|
system_prompt=system_prompt,
|
|
temperature=temperature,
|
|
max_output_tokens=max_output_tokens,
|
|
**kwargs,
|
|
)
|
|
|
|
def supports_thinking_mode(self, model_name: str) -> bool:
|
|
"""Check if the model supports extended thinking mode."""
|
|
# Currently no OpenAI models support extended thinking
|
|
# This may change with future O3 models
|
|
return False
|
|
|
|
def list_models(self, respect_restrictions: bool = True) -> list[str]:
|
|
"""Return a list of model names supported by this provider.
|
|
|
|
Args:
|
|
respect_restrictions: Whether to apply provider-specific restriction logic.
|
|
|
|
Returns:
|
|
List of model names available from this provider
|
|
"""
|
|
from utils.model_restrictions import get_restriction_service
|
|
|
|
restriction_service = get_restriction_service() if respect_restrictions else None
|
|
models = []
|
|
|
|
for model_name, config in self.SUPPORTED_MODELS.items():
|
|
# Handle both base models (dict configs) and aliases (string values)
|
|
if isinstance(config, str):
|
|
# This is an alias - check if the target model would be allowed
|
|
target_model = config
|
|
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), target_model):
|
|
continue
|
|
# Allow the alias
|
|
models.append(model_name)
|
|
else:
|
|
# This is a base model with config dict
|
|
# Check restrictions if enabled
|
|
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name):
|
|
continue
|
|
models.append(model_name)
|
|
|
|
return models
|
|
|
|
def list_all_known_models(self) -> list[str]:
|
|
"""Return all model names known by this provider, including alias targets.
|
|
|
|
Returns:
|
|
List of all model names and alias targets known by this provider
|
|
"""
|
|
all_models = set()
|
|
|
|
for model_name, config in self.SUPPORTED_MODELS.items():
|
|
# Add the model name itself
|
|
all_models.add(model_name.lower())
|
|
|
|
# If it's an alias (string value), add the target model too
|
|
if isinstance(config, str):
|
|
all_models.add(config.lower())
|
|
|
|
return list(all_models)
|
|
|
|
def _resolve_model_name(self, model_name: str) -> str:
|
|
"""Resolve model shorthand to full name."""
|
|
# Check if it's a shorthand
|
|
shorthand_value = self.SUPPORTED_MODELS.get(model_name)
|
|
if isinstance(shorthand_value, str):
|
|
return shorthand_value
|
|
return model_name
|