Files
my-pal-mcp-server/providers/gemini.py
2025-06-13 09:06:12 +04:00

214 lines
8.4 KiB
Python

"""Gemini model provider implementation."""
from typing import Optional
from google import genai
from google.genai import types
from .base import ModelCapabilities, ModelProvider, ModelResponse, ProviderType, RangeTemperatureConstraint
class GeminiModelProvider(ModelProvider):
"""Google Gemini model provider implementation."""
# Model configurations
SUPPORTED_MODELS = {
"gemini-2.5-flash-preview-05-20": {
"context_window": 1_048_576, # 1M tokens
"supports_extended_thinking": True,
"max_thinking_tokens": 24576, # Flash 2.5 thinking budget limit
},
"gemini-2.5-pro-preview-06-05": {
"context_window": 1_048_576, # 1M tokens
"supports_extended_thinking": True,
"max_thinking_tokens": 32768, # Pro 2.5 thinking budget limit
},
# Shorthands
"flash": "gemini-2.5-flash-preview-05-20",
"pro": "gemini-2.5-pro-preview-06-05",
}
# Thinking mode configurations - percentages of model's max_thinking_tokens
# These percentages work across all models that support thinking
THINKING_BUDGETS = {
"minimal": 0.005, # 0.5% of max - minimal thinking for fast responses
"low": 0.08, # 8% of max - light reasoning tasks
"medium": 0.33, # 33% of max - balanced reasoning (default)
"high": 0.67, # 67% of max - complex analysis
"max": 1.0, # 100% of max - full thinking budget
}
def __init__(self, api_key: str, **kwargs):
"""Initialize Gemini provider with API key."""
super().__init__(api_key, **kwargs)
self._client = None
self._token_counters = {} # Cache for token counting
@property
def client(self):
"""Lazy initialization of Gemini client."""
if self._client is None:
self._client = genai.Client(api_key=self.api_key)
return self._client
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific Gemini model."""
# Resolve shorthand
resolved_name = self._resolve_model_name(model_name)
if resolved_name not in self.SUPPORTED_MODELS:
raise ValueError(f"Unsupported Gemini model: {model_name}")
config = self.SUPPORTED_MODELS[resolved_name]
# Gemini models support 0.0-2.0 temperature range
temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7)
return ModelCapabilities(
provider=ProviderType.GOOGLE,
model_name=resolved_name,
friendly_name="Gemini",
context_window=config["context_window"],
supports_extended_thinking=config["supports_extended_thinking"],
supports_system_prompts=True,
supports_streaming=True,
supports_function_calling=True,
temperature_constraint=temp_constraint,
)
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
thinking_mode: str = "medium",
**kwargs,
) -> ModelResponse:
"""Generate content using Gemini model."""
# Validate parameters
resolved_name = self._resolve_model_name(model_name)
self.validate_parameters(resolved_name, temperature)
# Combine system prompt with user prompt if provided
if system_prompt:
full_prompt = f"{system_prompt}\n\n{prompt}"
else:
full_prompt = prompt
# Prepare generation config
generation_config = types.GenerateContentConfig(
temperature=temperature,
candidate_count=1,
)
# Add max output tokens if specified
if max_output_tokens:
generation_config.max_output_tokens = max_output_tokens
# Add thinking configuration for models that support it
capabilities = self.get_capabilities(resolved_name)
if capabilities.supports_extended_thinking and thinking_mode in self.THINKING_BUDGETS:
# Get model's max thinking tokens and calculate actual budget
model_config = self.SUPPORTED_MODELS.get(resolved_name)
if model_config and "max_thinking_tokens" in model_config:
max_thinking_tokens = model_config["max_thinking_tokens"]
actual_thinking_budget = int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode])
generation_config.thinking_config = types.ThinkingConfig(thinking_budget=actual_thinking_budget)
try:
# Generate content
response = self.client.models.generate_content(
model=resolved_name,
contents=full_prompt,
config=generation_config,
)
# Extract usage information if available
usage = self._extract_usage(response)
return ModelResponse(
content=response.text,
usage=usage,
model_name=resolved_name,
friendly_name="Gemini",
provider=ProviderType.GOOGLE,
metadata={
"thinking_mode": thinking_mode if capabilities.supports_extended_thinking else None,
"finish_reason": (
getattr(response.candidates[0], "finish_reason", "STOP") if response.candidates else "STOP"
),
},
)
except Exception as e:
# Log error and re-raise with more context
error_msg = f"Gemini API error for model {resolved_name}: {str(e)}"
raise RuntimeError(error_msg) from e
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text using Gemini's tokenizer."""
self._resolve_model_name(model_name)
# For now, use a simple estimation
# TODO: Use actual Gemini tokenizer when available in SDK
# Rough estimation: ~4 characters per token for English text
return len(text) // 4
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.GOOGLE
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported."""
resolved_name = self._resolve_model_name(model_name)
return resolved_name in self.SUPPORTED_MODELS and isinstance(self.SUPPORTED_MODELS[resolved_name], dict)
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
capabilities = self.get_capabilities(model_name)
return capabilities.supports_extended_thinking
def get_thinking_budget(self, model_name: str, thinking_mode: str) -> int:
"""Get actual thinking token budget for a model and thinking mode."""
resolved_name = self._resolve_model_name(model_name)
model_config = self.SUPPORTED_MODELS.get(resolved_name, {})
if not model_config.get("supports_extended_thinking", False):
return 0
if thinking_mode not in self.THINKING_BUDGETS:
return 0
max_thinking_tokens = model_config.get("max_thinking_tokens", 0)
if max_thinking_tokens == 0:
return 0
return int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode])
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model shorthand to full name."""
# Check if it's a shorthand
shorthand_value = self.SUPPORTED_MODELS.get(model_name.lower())
if isinstance(shorthand_value, str):
return shorthand_value
return model_name
def _extract_usage(self, response) -> dict[str, int]:
"""Extract token usage from Gemini response."""
usage = {}
# Try to extract usage metadata from response
# Note: The actual structure depends on the SDK version and response format
if hasattr(response, "usage_metadata"):
metadata = response.usage_metadata
if hasattr(metadata, "prompt_token_count"):
usage["input_tokens"] = metadata.prompt_token_count
if hasattr(metadata, "candidates_token_count"):
usage["output_tokens"] = metadata.candidates_token_count
if "input_tokens" in usage and "output_tokens" in usage:
usage["total_tokens"] = usage["input_tokens"] + usage["output_tokens"]
return usage