Files
my-pal-mcp-server/tools/debug_issue.py
Fahad 8c07ad1eb2 feat: enhance debug_issue tool description to encourage sharing large diagnostic files
- Emphasize Gemini's 1M token capacity in the description
- Explicitly encourage sharing large log files, stack traces, memory dumps
- Add 'diagnose issue' as a trigger phrase
- Instruct Claude to proactively use this tool for debugging
- Encourage sharing comprehensive file paths rather than snippets
- Make clear that more context leads to better debugging analysis

This ensures Claude understands it should liberally share diagnostic
files and logs when debugging, taking full advantage of Gemini's
massive context window for thorough root cause analysis.

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-10 11:37:57 +04:00

190 lines
8.4 KiB
Python

"""
Debug Issue tool - Root cause analysis and debugging assistance
"""
from typing import Any, Optional
from mcp.types import TextContent
from pydantic import Field
from config import TEMPERATURE_ANALYTICAL
from prompts import DEBUG_ISSUE_PROMPT
from utils import read_files
from .base import BaseTool, ToolRequest
from .models import ToolOutput
class DebugIssueRequest(ToolRequest):
"""Request model for debug_issue tool"""
error_description: str = Field(..., description="Error message, symptoms, or issue description")
error_context: Optional[str] = Field(None, description="Stack trace, logs, or additional error context")
files: Optional[list[str]] = Field(
None,
description="Files or directories that might be related to the issue (must be absolute paths)",
)
runtime_info: Optional[str] = Field(None, description="Environment, versions, or runtime information")
previous_attempts: Optional[str] = Field(None, description="What has been tried already")
class DebugIssueTool(BaseTool):
"""Advanced debugging and root cause analysis tool"""
def get_name(self) -> str:
return "debug_issue"
def get_description(self) -> str:
return (
"DEBUG & ROOT CAUSE ANALYSIS - Expert debugging for complex issues with 1M token capacity. "
"Use this when you need help tracking down bugs or understanding errors. "
"Triggers: 'debug this', 'why is this failing', 'root cause', 'trace error', 'diagnose issue'. "
"IMPORTANT: Share diagnostic files liberally! Gemini can handle up to 1M tokens, so include: "
"large log files, full stack traces, memory dumps, diagnostic outputs, multiple related files, "
"entire modules, test results, configuration files - anything that might help debug the issue. "
"Claude should proactively use this tool whenever debugging is needed and share comprehensive "
"file paths rather than snippets. Include error messages, stack traces, logs, and ALL relevant "
"code files as absolute paths. The more context, the better the debugging analysis. "
"Choose thinking_mode based on issue complexity: 'low' for simple errors, "
"'medium' for standard debugging (default), 'high' for complex system issues, "
"'max' for extremely challenging bugs requiring deepest analysis."
)
def get_input_schema(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"error_description": {
"type": "string",
"description": "Error message, symptoms, or issue description",
},
"error_context": {
"type": "string",
"description": "Stack trace, logs, or additional error context",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files or directories that might be related to the issue (must be absolute paths)",
},
"runtime_info": {
"type": "string",
"description": "Environment, versions, or runtime information",
},
"previous_attempts": {
"type": "string",
"description": "What has been tried already",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2 for accuracy)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
"default": False,
},
},
"required": ["error_description"],
}
def get_system_prompt(self) -> str:
return DEBUG_ISSUE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_request_model(self):
return DebugIssueRequest
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
"""Override execute to check error_description and error_context size before processing"""
# First validate request
request_model = self.get_request_model()
request = request_model(**arguments)
# Check error_description size
size_check = self.check_prompt_size(request.error_description)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Check error_context size if provided
if request.error_context:
size_check = self.check_prompt_size(request.error_context)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Continue with normal execution
return await super().execute(arguments)
async def prepare_prompt(self, request: DebugIssueRequest) -> str:
"""Prepare the debugging prompt"""
# Check for prompt.txt in files
prompt_content, updated_files = self.handle_prompt_file(request.files)
# If prompt.txt was found, use it as error_description or error_context
# Priority: if error_description is empty, use it there, otherwise use as error_context
if prompt_content:
if not request.error_description or request.error_description == "":
request.error_description = prompt_content
else:
request.error_context = prompt_content
# Update request files list
if updated_files is not None:
request.files = updated_files
# Build context sections
context_parts = [f"=== ISSUE DESCRIPTION ===\n{request.error_description}\n=== END DESCRIPTION ==="]
if request.error_context:
context_parts.append(f"\n=== ERROR CONTEXT/STACK TRACE ===\n{request.error_context}\n=== END CONTEXT ===")
if request.runtime_info:
context_parts.append(f"\n=== RUNTIME INFORMATION ===\n{request.runtime_info}\n=== END RUNTIME ===")
if request.previous_attempts:
context_parts.append(f"\n=== PREVIOUS ATTEMPTS ===\n{request.previous_attempts}\n=== END ATTEMPTS ===")
# Add relevant files if provided
if request.files:
file_content = read_files(request.files)
context_parts.append(f"\n=== RELEVANT CODE ===\n{file_content}\n=== END CODE ===")
full_context = "\n".join(context_parts)
# Check token limits
self._validate_token_limit(full_context, "Context")
# Add web search instruction if enabled
websearch_instruction = self.get_websearch_instruction(
request.use_websearch,
"""Specifically search for:
- The exact error message to find known solutions
- Framework-specific error codes and their meanings
- Similar issues in forums, GitHub issues, or Stack Overflow
- Workarounds and patches for known bugs
- Version-specific issues and compatibility problems""",
)
# Combine everything
full_prompt = f"""{self.get_system_prompt()}{websearch_instruction}
{full_context}
Please debug this issue following the structured format in the system prompt.
Focus on finding the root cause and providing actionable solutions."""
return full_prompt
def format_response(self, response: str, request: DebugIssueRequest) -> str:
"""Format the debugging response"""
return f"Debug Analysis\n{'=' * 50}\n\n{response}\n\n---\n\n**Next Steps:** Evaluate Gemini's recommendations, synthesize the best fix considering potential regressions, test thoroughly, and ensure the solution doesn't introduce new issues."