1331 lines
58 KiB
Python
1331 lines
58 KiB
Python
"""
|
|
Base class for all Zen MCP tools
|
|
|
|
This module provides the abstract base class that all tools must inherit from.
|
|
It defines the contract that tools must implement and provides common functionality
|
|
for request validation, error handling, and response formatting.
|
|
|
|
Key responsibilities:
|
|
- Define the tool interface (abstract methods that must be implemented)
|
|
- Handle request validation and file path security
|
|
- Manage Gemini model creation with appropriate configurations
|
|
- Standardize response formatting and error handling
|
|
- Support for clarification requests when more information is needed
|
|
"""
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Literal, Optional
|
|
|
|
from mcp.types import TextContent
|
|
from pydantic import BaseModel, Field
|
|
|
|
from config import MAX_CONTEXT_TOKENS, MCP_PROMPT_SIZE_LIMIT
|
|
from providers import ModelProvider, ModelProviderRegistry
|
|
from utils import check_token_limit
|
|
from utils.conversation_memory import (
|
|
MAX_CONVERSATION_TURNS,
|
|
add_turn,
|
|
create_thread,
|
|
get_conversation_file_list,
|
|
get_thread,
|
|
)
|
|
from utils.file_utils import read_file_content, read_files, translate_path_for_environment
|
|
|
|
from .models import ClarificationRequest, ContinuationOffer, ToolOutput
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ToolRequest(BaseModel):
|
|
"""
|
|
Base request model for all tools.
|
|
|
|
This Pydantic model defines common parameters that can be used by any tool.
|
|
Tools can extend this model to add their specific parameters while inheriting
|
|
these common fields.
|
|
"""
|
|
|
|
model: Optional[str] = Field(
|
|
None,
|
|
description="Model to use. See tool's input schema for available models and their capabilities.",
|
|
)
|
|
temperature: Optional[float] = Field(None, description="Temperature for response (tool-specific defaults)")
|
|
# Thinking mode controls how much computational budget the model uses for reasoning
|
|
# Higher values allow for more complex reasoning but increase latency and cost
|
|
thinking_mode: Optional[Literal["minimal", "low", "medium", "high", "max"]] = Field(
|
|
None,
|
|
description=(
|
|
"Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), "
|
|
"max (100% of model max)"
|
|
),
|
|
)
|
|
use_websearch: Optional[bool] = Field(
|
|
True,
|
|
description=(
|
|
"Enable web search for documentation, best practices, and current information. "
|
|
"When enabled, the model can request Claude to perform web searches and share results back "
|
|
"during conversations. Particularly useful for: brainstorming sessions, architectural design "
|
|
"discussions, exploring industry best practices, working with specific frameworks/technologies, "
|
|
"researching solutions to complex problems, or when current documentation and community insights "
|
|
"would enhance the analysis."
|
|
),
|
|
)
|
|
continuation_id: Optional[str] = Field(
|
|
None,
|
|
description=(
|
|
"Thread continuation ID for multi-turn conversations. Can be used to continue conversations "
|
|
"across different tools. Only provide this if continuing a previous conversation thread."
|
|
),
|
|
)
|
|
|
|
|
|
class BaseTool(ABC):
|
|
"""
|
|
Abstract base class for all Gemini tools.
|
|
|
|
This class defines the interface that all tools must implement and provides
|
|
common functionality for request handling, model creation, and response formatting.
|
|
|
|
To create a new tool:
|
|
1. Create a new class that inherits from BaseTool
|
|
2. Implement all abstract methods
|
|
3. Define a request model that inherits from ToolRequest
|
|
4. Register the tool in server.py's TOOLS dictionary
|
|
"""
|
|
|
|
def __init__(self):
|
|
# Cache tool metadata at initialization to avoid repeated calls
|
|
self.name = self.get_name()
|
|
self.description = self.get_description()
|
|
self.default_temperature = self.get_default_temperature()
|
|
|
|
@abstractmethod
|
|
def get_name(self) -> str:
|
|
"""
|
|
Return the unique name identifier for this tool.
|
|
|
|
This name is used by MCP clients to invoke the tool and must be
|
|
unique across all registered tools.
|
|
|
|
Returns:
|
|
str: The tool's unique name (e.g., "review_code", "analyze")
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_description(self) -> str:
|
|
"""
|
|
Return a detailed description of what this tool does.
|
|
|
|
This description is shown to MCP clients (like Claude) to help them
|
|
understand when and how to use the tool. It should be comprehensive
|
|
and include trigger phrases.
|
|
|
|
Returns:
|
|
str: Detailed tool description with usage examples
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_input_schema(self) -> dict[str, Any]:
|
|
"""
|
|
Return the JSON Schema that defines this tool's parameters.
|
|
|
|
This schema is used by MCP clients to validate inputs before
|
|
sending requests. It should match the tool's request model.
|
|
|
|
Returns:
|
|
Dict[str, Any]: JSON Schema object defining required and optional parameters
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_system_prompt(self) -> str:
|
|
"""
|
|
Return the system prompt that configures the AI model's behavior.
|
|
|
|
This prompt sets the context and instructions for how the model
|
|
should approach the task. It's prepended to the user's request.
|
|
|
|
Returns:
|
|
str: System prompt with role definition and instructions
|
|
"""
|
|
pass
|
|
|
|
def get_model_field_schema(self) -> dict[str, Any]:
|
|
"""
|
|
Generate the model field schema based on auto mode configuration.
|
|
|
|
When auto mode is enabled, the model parameter becomes required
|
|
and includes detailed descriptions of each model's capabilities.
|
|
|
|
Returns:
|
|
Dict containing the model field JSON schema
|
|
"""
|
|
import os
|
|
|
|
from config import DEFAULT_MODEL, IS_AUTO_MODE, MODEL_CAPABILITIES_DESC
|
|
|
|
# Check if OpenRouter is configured
|
|
has_openrouter = bool(
|
|
os.getenv("OPENROUTER_API_KEY") and os.getenv("OPENROUTER_API_KEY") != "your_openrouter_api_key_here"
|
|
)
|
|
|
|
if IS_AUTO_MODE:
|
|
# In auto mode, model is required and we provide detailed descriptions
|
|
model_desc_parts = ["Choose the best model for this task based on these capabilities:"]
|
|
for model, desc in MODEL_CAPABILITIES_DESC.items():
|
|
model_desc_parts.append(f"- '{model}': {desc}")
|
|
|
|
if has_openrouter:
|
|
# Add OpenRouter models with descriptions
|
|
try:
|
|
from providers.openrouter_registry import OpenRouterModelRegistry
|
|
import logging
|
|
|
|
registry = OpenRouterModelRegistry()
|
|
|
|
# Group models by their model_name to avoid duplicates
|
|
seen_models = set()
|
|
model_configs = []
|
|
|
|
for alias in registry.list_aliases():
|
|
config = registry.resolve(alias)
|
|
if config and config.model_name not in seen_models:
|
|
seen_models.add(config.model_name)
|
|
model_configs.append((alias, config))
|
|
|
|
# Sort by context window (descending) then by alias
|
|
model_configs.sort(key=lambda x: (-x[1].context_window, x[0]))
|
|
|
|
if model_configs:
|
|
model_desc_parts.append("\nOpenRouter models (use these aliases):")
|
|
for alias, config in model_configs[:10]: # Limit to top 10
|
|
# Format context window in human-readable form
|
|
context_tokens = config.context_window
|
|
if context_tokens >= 1_000_000:
|
|
context_str = f"{context_tokens // 1_000_000}M"
|
|
elif context_tokens >= 1_000:
|
|
context_str = f"{context_tokens // 1_000}K"
|
|
else:
|
|
context_str = str(context_tokens)
|
|
|
|
# Build description line
|
|
if config.description:
|
|
desc = f"- '{alias}' ({context_str} context): {config.description}"
|
|
else:
|
|
# Fallback to showing the model name if no description
|
|
desc = f"- '{alias}' ({context_str} context): {config.model_name}"
|
|
model_desc_parts.append(desc)
|
|
|
|
# Add note about additional models if any were cut off
|
|
total_models = len(model_configs)
|
|
if total_models > 10:
|
|
model_desc_parts.append(f"... and {total_models - 10} more models available")
|
|
except Exception as e:
|
|
# Log for debugging but don't fail
|
|
import logging
|
|
|
|
logging.debug(f"Failed to load OpenRouter model descriptions: {e}")
|
|
# Fallback to simple message
|
|
model_desc_parts.append(
|
|
"\nOpenRouter models: If configured, you can also use ANY model available on OpenRouter."
|
|
)
|
|
|
|
return {
|
|
"type": "string",
|
|
"description": "\n".join(model_desc_parts),
|
|
"enum": list(MODEL_CAPABILITIES_DESC.keys()),
|
|
}
|
|
else:
|
|
# Normal mode - model is optional with default
|
|
available_models = list(MODEL_CAPABILITIES_DESC.keys())
|
|
models_str = ", ".join(f"'{m}'" for m in available_models)
|
|
|
|
description = f"Model to use. Native models: {models_str}."
|
|
if has_openrouter:
|
|
# Add OpenRouter aliases
|
|
try:
|
|
# Import registry directly to show available aliases
|
|
# This works even without an API key
|
|
from providers.openrouter_registry import OpenRouterModelRegistry
|
|
|
|
registry = OpenRouterModelRegistry()
|
|
aliases = registry.list_aliases()
|
|
|
|
# Show ALL aliases from the configuration
|
|
if aliases:
|
|
# Show all aliases so Claude knows every option available
|
|
all_aliases = sorted(aliases)
|
|
alias_list = ", ".join(f"'{a}'" for a in all_aliases)
|
|
description += f" OpenRouter aliases: {alias_list}."
|
|
else:
|
|
description += " OpenRouter: Any model available on openrouter.ai."
|
|
except Exception:
|
|
description += (
|
|
" OpenRouter: Any model available on openrouter.ai "
|
|
"(e.g., 'gpt-4', 'claude-3-opus', 'mistral-large')."
|
|
)
|
|
description += f" Defaults to '{DEFAULT_MODEL}' if not specified."
|
|
|
|
return {
|
|
"type": "string",
|
|
"description": description,
|
|
}
|
|
|
|
def get_default_temperature(self) -> float:
|
|
"""
|
|
Return the default temperature setting for this tool.
|
|
|
|
Override this method to set tool-specific temperature defaults.
|
|
Lower values (0.0-0.3) for analytical tasks, higher (0.7-1.0) for creative tasks.
|
|
|
|
Returns:
|
|
float: Default temperature between 0.0 and 1.0
|
|
"""
|
|
return 0.5
|
|
|
|
def get_default_thinking_mode(self) -> str:
|
|
"""
|
|
Return the default thinking mode for this tool.
|
|
|
|
Thinking mode controls computational budget for reasoning.
|
|
Override for tools that need more or less reasoning depth.
|
|
|
|
Returns:
|
|
str: One of "minimal", "low", "medium", "high", "max"
|
|
"""
|
|
return "medium" # Default to medium thinking for better reasoning
|
|
|
|
def get_conversation_embedded_files(self, continuation_id: Optional[str]) -> list[str]:
|
|
"""
|
|
Get list of files already embedded in conversation history.
|
|
|
|
This method returns the list of files that have already been embedded
|
|
in the conversation history for a given continuation thread. Tools can
|
|
use this to avoid re-embedding files that are already available in the
|
|
conversation context.
|
|
|
|
Args:
|
|
continuation_id: Thread continuation ID, or None for new conversations
|
|
|
|
Returns:
|
|
list[str]: List of file paths already embedded in conversation history
|
|
"""
|
|
if not continuation_id:
|
|
# New conversation, no files embedded yet
|
|
return []
|
|
|
|
thread_context = get_thread(continuation_id)
|
|
if not thread_context:
|
|
# Thread not found, no files embedded
|
|
return []
|
|
|
|
embedded_files = get_conversation_file_list(thread_context)
|
|
logger.debug(f"[FILES] {self.name}: Found {len(embedded_files)} embedded files")
|
|
return embedded_files
|
|
|
|
def filter_new_files(self, requested_files: list[str], continuation_id: Optional[str]) -> list[str]:
|
|
"""
|
|
Filter out files that are already embedded in conversation history.
|
|
|
|
This method prevents duplicate file embeddings by filtering out files that have
|
|
already been embedded in the conversation history. This optimizes token usage
|
|
while ensuring tools still have logical access to all requested files through
|
|
conversation history references.
|
|
|
|
Args:
|
|
requested_files: List of files requested for current tool execution
|
|
continuation_id: Thread continuation ID, or None for new conversations
|
|
|
|
Returns:
|
|
list[str]: List of files that need to be embedded (not already in history)
|
|
"""
|
|
logger.debug(f"[FILES] {self.name}: Filtering {len(requested_files)} requested files")
|
|
|
|
if not continuation_id:
|
|
# New conversation, all files are new
|
|
logger.debug(f"[FILES] {self.name}: New conversation, all {len(requested_files)} files are new")
|
|
return requested_files
|
|
|
|
try:
|
|
embedded_files = set(self.get_conversation_embedded_files(continuation_id))
|
|
logger.debug(f"[FILES] {self.name}: Found {len(embedded_files)} embedded files in conversation")
|
|
|
|
# Safety check: If no files are marked as embedded but we have a continuation_id,
|
|
# this might indicate an issue with conversation history. Be conservative.
|
|
if not embedded_files:
|
|
logger.debug(f"{self.name} tool: No files found in conversation history for thread {continuation_id}")
|
|
logger.debug(
|
|
f"[FILES] {self.name}: No embedded files found, returning all {len(requested_files)} requested files"
|
|
)
|
|
return requested_files
|
|
|
|
# Return only files that haven't been embedded yet
|
|
new_files = [f for f in requested_files if f not in embedded_files]
|
|
logger.debug(
|
|
f"[FILES] {self.name}: After filtering: {len(new_files)} new files, {len(requested_files) - len(new_files)} already embedded"
|
|
)
|
|
logger.debug(f"[FILES] {self.name}: New files to embed: {new_files}")
|
|
|
|
# Log filtering results for debugging
|
|
if len(new_files) < len(requested_files):
|
|
skipped = [f for f in requested_files if f in embedded_files]
|
|
logger.debug(
|
|
f"{self.name} tool: Filtering {len(skipped)} files already in conversation history: {', '.join(skipped)}"
|
|
)
|
|
logger.debug(f"[FILES] {self.name}: Skipped (already embedded): {skipped}")
|
|
|
|
return new_files
|
|
|
|
except Exception as e:
|
|
# If there's any issue with conversation history lookup, be conservative
|
|
# and include all files rather than risk losing access to needed files
|
|
logger.warning(f"{self.name} tool: Error checking conversation history for {continuation_id}: {e}")
|
|
logger.warning(f"{self.name} tool: Including all requested files as fallback")
|
|
logger.debug(
|
|
f"[FILES] {self.name}: Exception in filter_new_files, returning all {len(requested_files)} files as fallback"
|
|
)
|
|
return requested_files
|
|
|
|
def _prepare_file_content_for_prompt(
|
|
self,
|
|
request_files: list[str],
|
|
continuation_id: Optional[str],
|
|
context_description: str = "New files",
|
|
max_tokens: Optional[int] = None,
|
|
reserve_tokens: int = 1_000,
|
|
remaining_budget: Optional[int] = None,
|
|
arguments: Optional[dict] = None,
|
|
) -> str:
|
|
"""
|
|
Centralized file processing for tool prompts.
|
|
|
|
This method handles the common pattern across all tools:
|
|
1. Filter out files already embedded in conversation history
|
|
2. Read content of only new files
|
|
3. Generate informative note about skipped files
|
|
|
|
Args:
|
|
request_files: List of files requested for current tool execution
|
|
continuation_id: Thread continuation ID, or None for new conversations
|
|
context_description: Description for token limit validation (e.g. "Code", "New files")
|
|
max_tokens: Maximum tokens to use (defaults to remaining budget or MAX_CONTENT_TOKENS)
|
|
reserve_tokens: Tokens to reserve for additional prompt content (default 1K)
|
|
remaining_budget: Remaining token budget after conversation history (from server.py)
|
|
arguments: Original tool arguments (used to extract _remaining_tokens if available)
|
|
|
|
Returns:
|
|
str: Formatted file content string ready for prompt inclusion
|
|
"""
|
|
if not request_files:
|
|
return ""
|
|
|
|
# Note: Even if conversation history is already embedded, we still need to process
|
|
# any NEW files that aren't in the conversation history yet. The filter_new_files
|
|
# method will correctly identify which files need to be embedded.
|
|
|
|
# Extract remaining budget from arguments if available
|
|
if remaining_budget is None:
|
|
# Use provided arguments or fall back to stored arguments from execute()
|
|
args_to_use = arguments or getattr(self, "_current_arguments", {})
|
|
remaining_budget = args_to_use.get("_remaining_tokens")
|
|
|
|
# Use remaining budget if provided, otherwise fall back to max_tokens or model-specific default
|
|
if remaining_budget is not None:
|
|
effective_max_tokens = remaining_budget - reserve_tokens
|
|
elif max_tokens is not None:
|
|
effective_max_tokens = max_tokens - reserve_tokens
|
|
else:
|
|
# Get model-specific limits
|
|
# First check if model_context was passed from server.py
|
|
model_context = None
|
|
if arguments:
|
|
model_context = arguments.get("_model_context") or getattr(self, "_current_arguments", {}).get(
|
|
"_model_context"
|
|
)
|
|
|
|
if model_context:
|
|
# Use the passed model context
|
|
try:
|
|
token_allocation = model_context.calculate_token_allocation()
|
|
effective_max_tokens = token_allocation.file_tokens - reserve_tokens
|
|
logger.debug(
|
|
f"[FILES] {self.name}: Using passed model context for {model_context.model_name}: "
|
|
f"{token_allocation.file_tokens:,} file tokens from {token_allocation.total_tokens:,} total"
|
|
)
|
|
except Exception as e:
|
|
logger.warning(f"[FILES] {self.name}: Error using passed model context: {e}")
|
|
# Fall through to manual calculation
|
|
model_context = None
|
|
|
|
if not model_context:
|
|
# Manual calculation as fallback
|
|
from config import DEFAULT_MODEL
|
|
|
|
model_name = getattr(self, "_current_model_name", None) or DEFAULT_MODEL
|
|
try:
|
|
provider = self.get_model_provider(model_name)
|
|
capabilities = provider.get_capabilities(model_name)
|
|
|
|
# Calculate content allocation based on model capacity
|
|
if capabilities.max_tokens < 300_000:
|
|
# Smaller context models: 60% content, 40% response
|
|
model_content_tokens = int(capabilities.max_tokens * 0.6)
|
|
else:
|
|
# Larger context models: 80% content, 20% response
|
|
model_content_tokens = int(capabilities.max_tokens * 0.8)
|
|
|
|
effective_max_tokens = model_content_tokens - reserve_tokens
|
|
logger.debug(
|
|
f"[FILES] {self.name}: Using model-specific limit for {model_name}: "
|
|
f"{model_content_tokens:,} content tokens from {capabilities.max_tokens:,} total"
|
|
)
|
|
except (ValueError, AttributeError) as e:
|
|
# Handle specific errors: provider not found, model not supported, missing attributes
|
|
logger.warning(
|
|
f"[FILES] {self.name}: Could not get model capabilities for {model_name}: {type(e).__name__}: {e}"
|
|
)
|
|
# Fall back to conservative default for safety
|
|
from config import MAX_CONTENT_TOKENS
|
|
|
|
effective_max_tokens = min(MAX_CONTENT_TOKENS, 100_000) - reserve_tokens
|
|
except Exception as e:
|
|
# Catch any other unexpected errors
|
|
logger.error(
|
|
f"[FILES] {self.name}: Unexpected error getting model capabilities: {type(e).__name__}: {e}"
|
|
)
|
|
from config import MAX_CONTENT_TOKENS
|
|
|
|
effective_max_tokens = min(MAX_CONTENT_TOKENS, 100_000) - reserve_tokens
|
|
|
|
# Ensure we have a reasonable minimum budget
|
|
effective_max_tokens = max(1000, effective_max_tokens)
|
|
|
|
files_to_embed = self.filter_new_files(request_files, continuation_id)
|
|
logger.debug(f"[FILES] {self.name}: Will embed {len(files_to_embed)} files after filtering")
|
|
|
|
# Log the specific files for debugging/testing
|
|
if files_to_embed:
|
|
logger.info(
|
|
f"[FILE_PROCESSING] {self.name} tool will embed new files: {', '.join([os.path.basename(f) for f in files_to_embed])}"
|
|
)
|
|
else:
|
|
logger.info(
|
|
f"[FILE_PROCESSING] {self.name} tool: No new files to embed (all files already in conversation history)"
|
|
)
|
|
|
|
content_parts = []
|
|
|
|
# Read content of new files only
|
|
if files_to_embed:
|
|
logger.debug(f"{self.name} tool embedding {len(files_to_embed)} new files: {', '.join(files_to_embed)}")
|
|
logger.debug(
|
|
f"[FILES] {self.name}: Starting file embedding with token budget {effective_max_tokens + reserve_tokens:,}"
|
|
)
|
|
try:
|
|
file_content = read_files(
|
|
files_to_embed, max_tokens=effective_max_tokens + reserve_tokens, reserve_tokens=reserve_tokens
|
|
)
|
|
self._validate_token_limit(file_content, context_description)
|
|
content_parts.append(file_content)
|
|
|
|
# Estimate tokens for debug logging
|
|
from utils.token_utils import estimate_tokens
|
|
|
|
content_tokens = estimate_tokens(file_content)
|
|
logger.debug(
|
|
f"{self.name} tool successfully embedded {len(files_to_embed)} files ({content_tokens:,} tokens)"
|
|
)
|
|
logger.debug(f"[FILES] {self.name}: Successfully embedded files - {content_tokens:,} tokens used")
|
|
except Exception as e:
|
|
logger.error(f"{self.name} tool failed to embed files {files_to_embed}: {type(e).__name__}: {e}")
|
|
logger.debug(f"[FILES] {self.name}: File embedding failed - {type(e).__name__}: {e}")
|
|
raise
|
|
else:
|
|
logger.debug(f"[FILES] {self.name}: No files to embed after filtering")
|
|
|
|
# Generate note about files already in conversation history
|
|
if continuation_id and len(files_to_embed) < len(request_files):
|
|
embedded_files = self.get_conversation_embedded_files(continuation_id)
|
|
skipped_files = [f for f in request_files if f in embedded_files]
|
|
if skipped_files:
|
|
logger.debug(
|
|
f"{self.name} tool skipping {len(skipped_files)} files already in conversation history: {', '.join(skipped_files)}"
|
|
)
|
|
logger.debug(f"[FILES] {self.name}: Adding note about {len(skipped_files)} skipped files")
|
|
if content_parts:
|
|
content_parts.append("\n\n")
|
|
note_lines = [
|
|
"--- NOTE: Additional files referenced in conversation history ---",
|
|
"The following files are already available in our conversation context:",
|
|
"\n".join(f" - {f}" for f in skipped_files),
|
|
"--- END NOTE ---",
|
|
]
|
|
content_parts.append("\n".join(note_lines))
|
|
else:
|
|
logger.debug(f"[FILES] {self.name}: No skipped files to note")
|
|
|
|
result = "".join(content_parts) if content_parts else ""
|
|
logger.debug(f"[FILES] {self.name}: _prepare_file_content_for_prompt returning {len(result)} chars")
|
|
return result
|
|
|
|
def get_websearch_instruction(self, use_websearch: bool, tool_specific: Optional[str] = None) -> str:
|
|
"""
|
|
Generate standardized web search instruction based on the use_websearch parameter.
|
|
|
|
Args:
|
|
use_websearch: Whether web search is enabled
|
|
tool_specific: Optional tool-specific search guidance
|
|
|
|
Returns:
|
|
str: Web search instruction to append to prompt, or empty string
|
|
"""
|
|
if not use_websearch:
|
|
return ""
|
|
|
|
base_instruction = """
|
|
|
|
WEB SEARCH CAPABILITY: You can request Claude to perform web searches to enhance your analysis with current information!
|
|
|
|
IMPORTANT: When you identify areas where web searches would significantly improve your response (such as checking current documentation, finding recent solutions, verifying best practices, or gathering community insights), you MUST explicitly instruct Claude to perform specific web searches and then respond back using the continuation_id from this response to continue the analysis.
|
|
|
|
Use clear, direct language based on the value of the search:
|
|
|
|
For valuable supplementary information: "Please perform a web search on '[specific topic/query]' and then continue this analysis using the continuation_id from this response if you find relevant information."
|
|
|
|
For important missing information: "Please search for '[specific topic/query]' and respond back with the findings using the continuation_id from this response - this information is needed to provide a complete analysis."
|
|
|
|
For critical/essential information: "SEARCH REQUIRED: Please immediately perform a web search on '[specific topic/query]' and respond back with the results using the continuation_id from this response. Cannot provide accurate analysis without this current information."
|
|
|
|
This ensures you get the most current and comprehensive information while maintaining conversation context through the continuation_id."""
|
|
|
|
if tool_specific:
|
|
return f"""{base_instruction}
|
|
|
|
{tool_specific}
|
|
|
|
When recommending searches, be specific about what information you need and why it would improve your analysis."""
|
|
|
|
# Default instruction for all tools
|
|
return f"""{base_instruction}
|
|
|
|
Consider requesting searches for:
|
|
- Current documentation and API references
|
|
- Recent best practices and patterns
|
|
- Known issues and community solutions
|
|
- Framework updates and compatibility
|
|
- Security advisories and patches
|
|
- Performance benchmarks and optimizations
|
|
|
|
When recommending searches, be specific about what information you need and why it would improve your analysis. Always remember to instruct Claude to use the continuation_id from this response when providing search results."""
|
|
|
|
@abstractmethod
|
|
def get_request_model(self):
|
|
"""
|
|
Return the Pydantic model class used for validating requests.
|
|
|
|
This model should inherit from ToolRequest and define all
|
|
parameters specific to this tool.
|
|
|
|
Returns:
|
|
Type[ToolRequest]: The request model class
|
|
"""
|
|
pass
|
|
|
|
def validate_file_paths(self, request) -> Optional[str]:
|
|
"""
|
|
Validate that all file paths in the request are absolute.
|
|
|
|
This is a critical security function that prevents path traversal attacks
|
|
and ensures all file access is properly controlled. All file paths must
|
|
be absolute to avoid ambiguity and security issues.
|
|
|
|
Args:
|
|
request: The validated request object
|
|
|
|
Returns:
|
|
Optional[str]: Error message if validation fails, None if all paths are valid
|
|
"""
|
|
# Check if request has 'files' attribute (used by most tools)
|
|
if hasattr(request, "files") and request.files:
|
|
for file_path in request.files:
|
|
if not os.path.isabs(file_path):
|
|
return (
|
|
f"Error: All file paths must be absolute. "
|
|
f"Received relative path: {file_path}\n"
|
|
f"Please provide the full absolute path starting with '/'"
|
|
)
|
|
|
|
# Check if request has 'path' attribute (used by review_changes tool)
|
|
if hasattr(request, "path") and request.path:
|
|
if not os.path.isabs(request.path):
|
|
return (
|
|
f"Error: Path must be absolute. "
|
|
f"Received relative path: {request.path}\n"
|
|
f"Please provide the full absolute path starting with '/'"
|
|
)
|
|
|
|
return None
|
|
|
|
def check_prompt_size(self, text: str) -> Optional[dict[str, Any]]:
|
|
"""
|
|
Check if a text field is too large for MCP's token limits.
|
|
|
|
The MCP protocol has a combined request+response limit of ~25K tokens.
|
|
To ensure adequate space for responses, we limit prompt input to a
|
|
configurable character limit (default 50K chars ~= 10-12K tokens).
|
|
Larger prompts are handled by having Claude save them to a file,
|
|
bypassing MCP's token constraints while preserving response capacity.
|
|
|
|
Args:
|
|
text: The text to check
|
|
|
|
Returns:
|
|
Optional[Dict[str, Any]]: Response asking for file handling if too large, None otherwise
|
|
"""
|
|
if text and len(text) > MCP_PROMPT_SIZE_LIMIT:
|
|
return {
|
|
"status": "requires_file_prompt",
|
|
"content": (
|
|
f"The prompt is too large for MCP's token limits (>{MCP_PROMPT_SIZE_LIMIT:,} characters). "
|
|
"Please save the prompt text to a temporary file named 'prompt.txt' and "
|
|
"resend the request with an empty prompt string and the absolute file path included "
|
|
"in the files parameter, along with any other files you wish to share as context."
|
|
),
|
|
"content_type": "text",
|
|
"metadata": {
|
|
"prompt_size": len(text),
|
|
"limit": MCP_PROMPT_SIZE_LIMIT,
|
|
"instructions": "Save prompt to 'prompt.txt' and include absolute path in files parameter",
|
|
},
|
|
}
|
|
return None
|
|
|
|
def handle_prompt_file(self, files: Optional[list[str]]) -> tuple[Optional[str], Optional[list[str]]]:
|
|
"""
|
|
Check for and handle prompt.txt in the files list.
|
|
|
|
If prompt.txt is found, reads its content and removes it from the files list.
|
|
This file is treated specially as the main prompt, not as an embedded file.
|
|
|
|
This mechanism allows us to work around MCP's ~25K token limit by having
|
|
Claude save large prompts to a file, effectively using the file transfer
|
|
mechanism to bypass token constraints while preserving response capacity.
|
|
|
|
Args:
|
|
files: List of file paths (will be translated for current environment)
|
|
|
|
Returns:
|
|
tuple: (prompt_content, updated_files_list)
|
|
"""
|
|
if not files:
|
|
return None, files
|
|
|
|
prompt_content = None
|
|
updated_files = []
|
|
|
|
for file_path in files:
|
|
# Translate path for current environment (Docker/direct)
|
|
translated_path = translate_path_for_environment(file_path)
|
|
|
|
# Check if the filename is exactly "prompt.txt"
|
|
# This ensures we don't match files like "myprompt.txt" or "prompt.txt.bak"
|
|
if os.path.basename(translated_path) == "prompt.txt":
|
|
try:
|
|
# Read prompt.txt content and extract just the text
|
|
content, _ = read_file_content(translated_path)
|
|
# Extract the content between the file markers
|
|
if "--- BEGIN FILE:" in content and "--- END FILE:" in content:
|
|
lines = content.split("\n")
|
|
in_content = False
|
|
content_lines = []
|
|
for line in lines:
|
|
if line.startswith("--- BEGIN FILE:"):
|
|
in_content = True
|
|
continue
|
|
elif line.startswith("--- END FILE:"):
|
|
break
|
|
elif in_content:
|
|
content_lines.append(line)
|
|
prompt_content = "\n".join(content_lines)
|
|
else:
|
|
# Fallback: if it's already raw content (from tests or direct input)
|
|
# and doesn't have error markers, use it directly
|
|
if not content.startswith("\n--- ERROR"):
|
|
prompt_content = content
|
|
else:
|
|
prompt_content = None
|
|
except Exception:
|
|
# If we can't read the file, we'll just skip it
|
|
# The error will be handled elsewhere
|
|
pass
|
|
else:
|
|
# Keep the original path in the files list (will be translated later by read_files)
|
|
updated_files.append(file_path)
|
|
|
|
return prompt_content, updated_files if updated_files else None
|
|
|
|
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
|
|
"""
|
|
Execute the tool with the provided arguments.
|
|
|
|
This is the main entry point for tool execution. It handles:
|
|
1. Request validation using the tool's Pydantic model
|
|
2. File path security validation
|
|
3. Prompt preparation
|
|
4. Model creation and configuration
|
|
5. Response generation and formatting
|
|
6. Error handling and recovery
|
|
|
|
Args:
|
|
arguments: Dictionary of arguments from the MCP client
|
|
|
|
Returns:
|
|
List[TextContent]: Formatted response as MCP TextContent objects
|
|
"""
|
|
try:
|
|
# Store arguments for access by helper methods (like _prepare_file_content_for_prompt)
|
|
self._current_arguments = arguments
|
|
|
|
# Set up logger for this tool execution
|
|
logger = logging.getLogger(f"tools.{self.name}")
|
|
logger.info(f"Starting {self.name} tool execution with arguments: {list(arguments.keys())}")
|
|
|
|
# Validate request using the tool's Pydantic model
|
|
# This ensures all required fields are present and properly typed
|
|
request_model = self.get_request_model()
|
|
request = request_model(**arguments)
|
|
logger.debug(f"Request validation successful for {self.name}")
|
|
|
|
# Validate file paths for security
|
|
# This prevents path traversal attacks and ensures proper access control
|
|
path_error = self.validate_file_paths(request)
|
|
if path_error:
|
|
error_output = ToolOutput(
|
|
status="error",
|
|
content=path_error,
|
|
content_type="text",
|
|
)
|
|
return [TextContent(type="text", text=error_output.model_dump_json())]
|
|
|
|
# Check if we have continuation_id - if so, conversation history is already embedded
|
|
continuation_id = getattr(request, "continuation_id", None)
|
|
|
|
if continuation_id:
|
|
# When continuation_id is present, server.py has already injected the
|
|
# conversation history into the appropriate field. We need to check if
|
|
# the prompt already contains conversation history marker.
|
|
logger.debug(f"Continuing {self.name} conversation with thread {continuation_id}")
|
|
|
|
# Store the original arguments to detect enhanced prompts
|
|
self._has_embedded_history = False
|
|
|
|
# Check if conversation history is already embedded in the prompt field
|
|
field_value = getattr(request, "prompt", "")
|
|
field_name = "prompt"
|
|
|
|
if "=== CONVERSATION HISTORY ===" in field_value:
|
|
# Conversation history is already embedded, use it directly
|
|
prompt = field_value
|
|
self._has_embedded_history = True
|
|
logger.debug(f"{self.name}: Using pre-embedded conversation history from {field_name}")
|
|
else:
|
|
# No embedded history, prepare prompt normally
|
|
prompt = await self.prepare_prompt(request)
|
|
logger.debug(f"{self.name}: No embedded history found, prepared prompt normally")
|
|
else:
|
|
# New conversation, prepare prompt normally
|
|
prompt = await self.prepare_prompt(request)
|
|
|
|
# Add follow-up instructions for new conversations
|
|
from server import get_follow_up_instructions
|
|
|
|
follow_up_instructions = get_follow_up_instructions(0) # New conversation, turn 0
|
|
prompt = f"{prompt}\n\n{follow_up_instructions}"
|
|
logger.debug(f"Added follow-up instructions for new {self.name} conversation")
|
|
|
|
# Extract model configuration from request or use defaults
|
|
model_name = getattr(request, "model", None)
|
|
if not model_name:
|
|
from config import DEFAULT_MODEL
|
|
|
|
model_name = DEFAULT_MODEL
|
|
|
|
# In auto mode, model parameter is required
|
|
from config import IS_AUTO_MODE
|
|
|
|
if IS_AUTO_MODE and model_name.lower() == "auto":
|
|
error_output = ToolOutput(
|
|
status="error",
|
|
content="Model parameter is required. Please specify which model to use for this task.",
|
|
content_type="text",
|
|
)
|
|
return [TextContent(type="text", text=error_output.model_dump_json())]
|
|
|
|
# Store model name for use by helper methods like _prepare_file_content_for_prompt
|
|
self._current_model_name = model_name
|
|
|
|
temperature = getattr(request, "temperature", None)
|
|
if temperature is None:
|
|
temperature = self.get_default_temperature()
|
|
thinking_mode = getattr(request, "thinking_mode", None)
|
|
if thinking_mode is None:
|
|
thinking_mode = self.get_default_thinking_mode()
|
|
|
|
# Get the appropriate model provider
|
|
provider = self.get_model_provider(model_name)
|
|
|
|
# Validate and correct temperature for this model
|
|
temperature, temp_warnings = self._validate_and_correct_temperature(model_name, temperature)
|
|
|
|
# Log any temperature corrections
|
|
for warning in temp_warnings:
|
|
logger.warning(warning)
|
|
|
|
# Get system prompt for this tool
|
|
system_prompt = self.get_system_prompt()
|
|
|
|
# Generate AI response using the provider
|
|
logger.info(f"Sending request to {provider.get_provider_type().value} API for {self.name}")
|
|
logger.info(f"Using model: {model_name} via {provider.get_provider_type().value} provider")
|
|
logger.debug(f"Prompt length: {len(prompt)} characters")
|
|
|
|
# Generate content with provider abstraction
|
|
model_response = provider.generate_content(
|
|
prompt=prompt,
|
|
model_name=model_name,
|
|
system_prompt=system_prompt,
|
|
temperature=temperature,
|
|
thinking_mode=thinking_mode if provider.supports_thinking_mode(model_name) else None,
|
|
)
|
|
|
|
logger.info(f"Received response from {provider.get_provider_type().value} API for {self.name}")
|
|
|
|
# Process the model's response
|
|
if model_response.content:
|
|
raw_text = model_response.content
|
|
|
|
# Parse response to check for clarification requests or format output
|
|
# Pass model info for conversation tracking
|
|
model_info = {"provider": provider, "model_name": model_name, "model_response": model_response}
|
|
tool_output = self._parse_response(raw_text, request, model_info)
|
|
logger.info(f"Successfully completed {self.name} tool execution")
|
|
|
|
else:
|
|
# Handle cases where the model couldn't generate a response
|
|
# This might happen due to safety filters or other constraints
|
|
finish_reason = model_response.metadata.get("finish_reason", "Unknown")
|
|
logger.warning(f"Response blocked or incomplete for {self.name}. Finish reason: {finish_reason}")
|
|
tool_output = ToolOutput(
|
|
status="error",
|
|
content=f"Response blocked or incomplete. Finish reason: {finish_reason}",
|
|
content_type="text",
|
|
)
|
|
|
|
# Return standardized JSON response for consistent client handling
|
|
return [TextContent(type="text", text=tool_output.model_dump_json())]
|
|
|
|
except Exception as e:
|
|
# Catch all exceptions to prevent server crashes
|
|
# Return error information in standardized format
|
|
logger = logging.getLogger(f"tools.{self.name}")
|
|
error_msg = str(e)
|
|
|
|
# Check if this is a 500 INTERNAL error that asks for retry
|
|
if "500 INTERNAL" in error_msg and "Please retry" in error_msg:
|
|
logger.warning(f"500 INTERNAL error in {self.name} - attempting retry")
|
|
try:
|
|
# Single retry attempt using provider
|
|
retry_response = provider.generate_content(
|
|
prompt=prompt,
|
|
model_name=model_name,
|
|
system_prompt=system_prompt,
|
|
temperature=temperature,
|
|
thinking_mode=thinking_mode if provider.supports_thinking_mode(model_name) else None,
|
|
)
|
|
|
|
if retry_response.content:
|
|
# If successful, process normally
|
|
retry_model_info = {
|
|
"provider": provider,
|
|
"model_name": model_name,
|
|
"model_response": retry_response,
|
|
}
|
|
tool_output = self._parse_response(retry_response.content, request, retry_model_info)
|
|
return [TextContent(type="text", text=tool_output.model_dump_json())]
|
|
|
|
except Exception as retry_e:
|
|
logger.error(f"Retry failed for {self.name} tool: {str(retry_e)}")
|
|
error_msg = f"Tool failed after retry: {str(retry_e)}"
|
|
|
|
logger.error(f"Error in {self.name} tool execution: {error_msg}", exc_info=True)
|
|
|
|
error_output = ToolOutput(
|
|
status="error",
|
|
content=f"Error in {self.name}: {error_msg}",
|
|
content_type="text",
|
|
)
|
|
return [TextContent(type="text", text=error_output.model_dump_json())]
|
|
|
|
def _parse_response(self, raw_text: str, request, model_info: Optional[dict] = None) -> ToolOutput:
|
|
"""
|
|
Parse the raw response and check for clarification requests.
|
|
|
|
This method formats the response and always offers a continuation opportunity
|
|
unless max conversation turns have been reached.
|
|
|
|
Args:
|
|
raw_text: The raw text response from the model
|
|
request: The original request for context
|
|
model_info: Optional dict with model metadata
|
|
|
|
Returns:
|
|
ToolOutput: Standardized output object
|
|
"""
|
|
logger = logging.getLogger(f"tools.{self.name}")
|
|
|
|
try:
|
|
# Try to parse as JSON to check for clarification requests
|
|
potential_json = json.loads(raw_text.strip())
|
|
|
|
if isinstance(potential_json, dict) and potential_json.get("status") == "requires_clarification":
|
|
# Validate the clarification request structure
|
|
clarification = ClarificationRequest(**potential_json)
|
|
return ToolOutput(
|
|
status="requires_clarification",
|
|
content=clarification.model_dump_json(),
|
|
content_type="json",
|
|
metadata={
|
|
"original_request": (request.model_dump() if hasattr(request, "model_dump") else str(request))
|
|
},
|
|
)
|
|
|
|
except (json.JSONDecodeError, ValueError, TypeError):
|
|
# Not a JSON clarification request, treat as normal response
|
|
pass
|
|
|
|
# Normal text response - format using tool-specific formatting
|
|
formatted_content = self.format_response(raw_text, request, model_info)
|
|
|
|
# Always check if we should offer Claude a continuation opportunity
|
|
continuation_offer = self._check_continuation_opportunity(request)
|
|
|
|
if continuation_offer:
|
|
logger.debug(
|
|
f"Creating continuation offer for {self.name} with {continuation_offer['remaining_turns']} turns remaining"
|
|
)
|
|
return self._create_continuation_offer_response(formatted_content, continuation_offer, request, model_info)
|
|
else:
|
|
logger.debug(f"No continuation offer created for {self.name} - max turns reached")
|
|
|
|
# If this is a threaded conversation (has continuation_id), save the response
|
|
continuation_id = getattr(request, "continuation_id", None)
|
|
if continuation_id:
|
|
request_files = getattr(request, "files", []) or []
|
|
# Extract model metadata for conversation tracking
|
|
model_provider = None
|
|
model_name = None
|
|
model_metadata = None
|
|
|
|
if model_info:
|
|
provider = model_info.get("provider")
|
|
if provider:
|
|
model_provider = provider.get_provider_type().value
|
|
model_name = model_info.get("model_name")
|
|
model_response = model_info.get("model_response")
|
|
if model_response:
|
|
model_metadata = {"usage": model_response.usage, "metadata": model_response.metadata}
|
|
|
|
success = add_turn(
|
|
continuation_id,
|
|
"assistant",
|
|
formatted_content,
|
|
files=request_files,
|
|
tool_name=self.name,
|
|
model_provider=model_provider,
|
|
model_name=model_name,
|
|
model_metadata=model_metadata,
|
|
)
|
|
if not success:
|
|
logging.warning(f"Failed to add turn to thread {continuation_id} for {self.name}")
|
|
|
|
# Determine content type based on the formatted content
|
|
content_type = (
|
|
"markdown" if any(marker in formatted_content for marker in ["##", "**", "`", "- ", "1. "]) else "text"
|
|
)
|
|
|
|
return ToolOutput(
|
|
status="success",
|
|
content=formatted_content,
|
|
content_type=content_type,
|
|
metadata={"tool_name": self.name},
|
|
)
|
|
|
|
def _check_continuation_opportunity(self, request) -> Optional[dict]:
|
|
"""
|
|
Check if we should offer Claude a continuation opportunity.
|
|
|
|
This is called when Gemini doesn't ask a follow-up question, but we want
|
|
to give Claude the chance to continue the conversation if needed.
|
|
|
|
Args:
|
|
request: The original request
|
|
|
|
Returns:
|
|
Dict with continuation data if opportunity should be offered, None otherwise
|
|
"""
|
|
# Skip continuation offers in test mode
|
|
import os
|
|
|
|
if os.getenv("PYTEST_CURRENT_TEST"):
|
|
return None
|
|
|
|
continuation_id = getattr(request, "continuation_id", None)
|
|
|
|
try:
|
|
if continuation_id:
|
|
# Check remaining turns in thread chain
|
|
from utils.conversation_memory import get_thread_chain
|
|
|
|
chain = get_thread_chain(continuation_id)
|
|
if chain:
|
|
# Count total turns across all threads in chain
|
|
total_turns = sum(len(thread.turns) for thread in chain)
|
|
remaining_turns = MAX_CONVERSATION_TURNS - total_turns - 1 # -1 for this response
|
|
else:
|
|
# Thread not found, don't offer continuation
|
|
return None
|
|
else:
|
|
# New conversation, we have MAX_CONVERSATION_TURNS - 1 remaining
|
|
# (since this response will be turn 1)
|
|
remaining_turns = MAX_CONVERSATION_TURNS - 1
|
|
|
|
if remaining_turns <= 0:
|
|
return None
|
|
|
|
# Offer continuation opportunity
|
|
return {"remaining_turns": remaining_turns, "tool_name": self.name}
|
|
except Exception:
|
|
# If anything fails, don't offer continuation
|
|
return None
|
|
|
|
def _create_continuation_offer_response(
|
|
self, content: str, continuation_data: dict, request, model_info: Optional[dict] = None
|
|
) -> ToolOutput:
|
|
"""
|
|
Create a response offering Claude the opportunity to continue conversation.
|
|
|
|
Args:
|
|
content: The main response content
|
|
continuation_data: Dict containing remaining_turns and tool_name
|
|
request: Original request for context
|
|
|
|
Returns:
|
|
ToolOutput configured with continuation offer
|
|
"""
|
|
try:
|
|
# Create new thread for potential continuation (with parent link if continuing)
|
|
continuation_id = getattr(request, "continuation_id", None)
|
|
thread_id = create_thread(
|
|
tool_name=self.name,
|
|
initial_request=request.model_dump() if hasattr(request, "model_dump") else {},
|
|
parent_thread_id=continuation_id, # Link to parent if this is a continuation
|
|
)
|
|
|
|
# Add this response as the first turn (assistant turn)
|
|
request_files = getattr(request, "files", []) or []
|
|
# Extract model metadata
|
|
model_provider = None
|
|
model_name = None
|
|
model_metadata = None
|
|
|
|
if model_info:
|
|
provider = model_info.get("provider")
|
|
if provider:
|
|
model_provider = provider.get_provider_type().value
|
|
model_name = model_info.get("model_name")
|
|
model_response = model_info.get("model_response")
|
|
if model_response:
|
|
model_metadata = {"usage": model_response.usage, "metadata": model_response.metadata}
|
|
|
|
add_turn(
|
|
thread_id,
|
|
"assistant",
|
|
content,
|
|
files=request_files,
|
|
tool_name=self.name,
|
|
model_provider=model_provider,
|
|
model_name=model_name,
|
|
model_metadata=model_metadata,
|
|
)
|
|
|
|
# Create continuation offer
|
|
remaining_turns = continuation_data["remaining_turns"]
|
|
continuation_offer = ContinuationOffer(
|
|
continuation_id=thread_id,
|
|
message_to_user=(
|
|
f"If you'd like to continue this discussion or need to provide me with further details or context, "
|
|
f"you can use the continuation_id '{thread_id}' with any tool and any model. "
|
|
f"You have {remaining_turns} more exchange(s) available in this conversation thread."
|
|
),
|
|
suggested_tool_params={
|
|
"continuation_id": thread_id,
|
|
"prompt": "[Your follow-up question, additional context, or further details]",
|
|
},
|
|
remaining_turns=remaining_turns,
|
|
)
|
|
|
|
return ToolOutput(
|
|
status="continuation_available",
|
|
content=content,
|
|
content_type="markdown",
|
|
continuation_offer=continuation_offer,
|
|
metadata={"tool_name": self.name, "thread_id": thread_id, "remaining_turns": remaining_turns},
|
|
)
|
|
|
|
except Exception as e:
|
|
# If threading fails, return normal response but log the error
|
|
logger = logging.getLogger(f"tools.{self.name}")
|
|
logger.warning(f"Conversation threading failed in {self.name}: {str(e)}")
|
|
return ToolOutput(
|
|
status="success",
|
|
content=content,
|
|
content_type="markdown",
|
|
metadata={"tool_name": self.name, "threading_error": str(e)},
|
|
)
|
|
|
|
@abstractmethod
|
|
async def prepare_prompt(self, request) -> str:
|
|
"""
|
|
Prepare the complete prompt for the Gemini model.
|
|
|
|
This method should combine the system prompt with the user's request
|
|
and any additional context (like file contents) needed for the task.
|
|
|
|
Args:
|
|
request: The validated request object
|
|
|
|
Returns:
|
|
str: Complete prompt ready for the model
|
|
"""
|
|
pass
|
|
|
|
def format_response(self, response: str, request, model_info: Optional[dict] = None) -> str:
|
|
"""
|
|
Format the model's response for display.
|
|
|
|
Override this method to add tool-specific formatting like headers,
|
|
summaries, or structured output. Default implementation returns
|
|
the response unchanged.
|
|
|
|
Args:
|
|
response: The raw response from the model
|
|
request: The original request for context
|
|
model_info: Optional dict with model metadata (provider, model_name, model_response)
|
|
|
|
Returns:
|
|
str: Formatted response
|
|
"""
|
|
return response
|
|
|
|
def _validate_token_limit(self, text: str, context_type: str = "Context") -> None:
|
|
"""
|
|
Validate token limit and raise ValueError if exceeded.
|
|
|
|
This centralizes the token limit check that was previously duplicated
|
|
in all prepare_prompt methods across tools.
|
|
|
|
Args:
|
|
text: The text to check
|
|
context_type: Description of what's being checked (for error message)
|
|
|
|
Raises:
|
|
ValueError: If text exceeds MAX_CONTEXT_TOKENS
|
|
"""
|
|
within_limit, estimated_tokens = check_token_limit(text)
|
|
if not within_limit:
|
|
raise ValueError(
|
|
f"{context_type} too large (~{estimated_tokens:,} tokens). Maximum is {MAX_CONTEXT_TOKENS:,} tokens."
|
|
)
|
|
|
|
def _validate_and_correct_temperature(self, model_name: str, temperature: float) -> tuple[float, list[str]]:
|
|
"""
|
|
Validate and correct temperature for the specified model.
|
|
|
|
Args:
|
|
model_name: Name of the model to validate temperature for
|
|
temperature: Temperature value to validate
|
|
|
|
Returns:
|
|
Tuple of (corrected_temperature, warning_messages)
|
|
"""
|
|
try:
|
|
provider = self.get_model_provider(model_name)
|
|
capabilities = provider.get_capabilities(model_name)
|
|
constraint = capabilities.temperature_constraint
|
|
|
|
warnings = []
|
|
|
|
if not constraint.validate(temperature):
|
|
corrected = constraint.get_corrected_value(temperature)
|
|
warning = (
|
|
f"Temperature {temperature} invalid for {model_name}. "
|
|
f"{constraint.get_description()}. Using {corrected} instead."
|
|
)
|
|
warnings.append(warning)
|
|
return corrected, warnings
|
|
|
|
return temperature, warnings
|
|
|
|
except Exception as e:
|
|
# If validation fails for any reason, use the original temperature
|
|
# and log a warning (but don't fail the request)
|
|
logger = logging.getLogger(f"tools.{self.name}")
|
|
logger.warning(f"Temperature validation failed for {model_name}: {e}")
|
|
return temperature, [f"Temperature validation failed: {e}"]
|
|
|
|
def get_model_provider(self, model_name: str) -> ModelProvider:
|
|
"""
|
|
Get a model provider for the specified model.
|
|
|
|
Args:
|
|
model_name: Name of the model to use (can be provider-specific or generic)
|
|
|
|
Returns:
|
|
ModelProvider instance configured for the model
|
|
|
|
Raises:
|
|
ValueError: If no provider supports the requested model
|
|
"""
|
|
# Get provider from registry
|
|
provider = ModelProviderRegistry.get_provider_for_model(model_name)
|
|
|
|
if not provider:
|
|
# Try to determine provider from model name patterns
|
|
if "gemini" in model_name.lower() or model_name.lower() in ["flash", "pro"]:
|
|
# Register Gemini provider if not already registered
|
|
from providers.base import ProviderType
|
|
from providers.gemini import GeminiModelProvider
|
|
|
|
ModelProviderRegistry.register_provider(ProviderType.GOOGLE, GeminiModelProvider)
|
|
provider = ModelProviderRegistry.get_provider(ProviderType.GOOGLE)
|
|
elif "gpt" in model_name.lower() or "o3" in model_name.lower():
|
|
# Register OpenAI provider if not already registered
|
|
from providers.base import ProviderType
|
|
from providers.openai import OpenAIModelProvider
|
|
|
|
ModelProviderRegistry.register_provider(ProviderType.OPENAI, OpenAIModelProvider)
|
|
provider = ModelProviderRegistry.get_provider(ProviderType.OPENAI)
|
|
|
|
if not provider:
|
|
raise ValueError(
|
|
f"No provider found for model '{model_name}'. "
|
|
f"Ensure the appropriate API key is set and the model name is correct."
|
|
)
|
|
|
|
return provider
|