- Fixed review_changes tool to properly translate host paths to container paths in Docker - Prevents "No such file or directory" errors when running in Docker containers - Added proper error handling with clear messages when paths are inaccessible refactor: Centralized token limit validation across all tools - Added _validate_token_limit method to BaseTool to eliminate code duplication - Reduced ~25 lines of duplicated code across 5 tools (analyze, chat, debug_issue, review_code, think_deeper) - Maintains exact same error messages and behavior feat: Enhanced large prompt handling - Added support for prompts >50K chars by requesting file-based input - Preserves MCP's ~25K token capacity for responses - All tools now check prompt size before processing test: Added comprehensive Docker path integration tests - Tests for path translation, security validation, and error handling - Tests for review_changes tool specifically with Docker paths - Fixed failing think_deeper test (updated default from "max" to "high") chore: Code quality improvements - Applied black formatting across all files - Fixed import sorting with isort - All tests passing (96 tests) - Standardized error handling follows MCP TextContent format The changes ensure consistent behavior across all environments while reducing code duplication and improving maintainability. 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
193 lines
6.9 KiB
Python
193 lines
6.9 KiB
Python
"""
|
|
Debug Issue tool - Root cause analysis and debugging assistance
|
|
"""
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from mcp.types import TextContent
|
|
from pydantic import Field
|
|
|
|
from config import TEMPERATURE_ANALYTICAL
|
|
from prompts import DEBUG_ISSUE_PROMPT
|
|
from utils import read_files
|
|
|
|
from .base import BaseTool, ToolRequest
|
|
from .models import ToolOutput
|
|
|
|
|
|
class DebugIssueRequest(ToolRequest):
|
|
"""Request model for debug_issue tool"""
|
|
|
|
error_description: str = Field(
|
|
..., description="Error message, symptoms, or issue description"
|
|
)
|
|
error_context: Optional[str] = Field(
|
|
None, description="Stack trace, logs, or additional error context"
|
|
)
|
|
files: Optional[List[str]] = Field(
|
|
None,
|
|
description="Files or directories that might be related to the issue (must be absolute paths)",
|
|
)
|
|
runtime_info: Optional[str] = Field(
|
|
None, description="Environment, versions, or runtime information"
|
|
)
|
|
previous_attempts: Optional[str] = Field(
|
|
None, description="What has been tried already"
|
|
)
|
|
|
|
|
|
class DebugIssueTool(BaseTool):
|
|
"""Advanced debugging and root cause analysis tool"""
|
|
|
|
def get_name(self) -> str:
|
|
return "debug_issue"
|
|
|
|
def get_description(self) -> str:
|
|
return (
|
|
"DEBUG & ROOT CAUSE ANALYSIS - Expert debugging for complex issues. "
|
|
"Use this when you need help tracking down bugs or understanding errors. "
|
|
"Triggers: 'debug this', 'why is this failing', 'root cause', 'trace error'. "
|
|
"I'll analyze the issue, find root causes, and provide step-by-step solutions. "
|
|
"Include error messages, stack traces, and relevant code for best results."
|
|
)
|
|
|
|
def get_input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"error_description": {
|
|
"type": "string",
|
|
"description": "Error message, symptoms, or issue description",
|
|
},
|
|
"error_context": {
|
|
"type": "string",
|
|
"description": "Stack trace, logs, or additional error context",
|
|
},
|
|
"files": {
|
|
"type": "array",
|
|
"items": {"type": "string"},
|
|
"description": "Files or directories that might be related to the issue (must be absolute paths)",
|
|
},
|
|
"runtime_info": {
|
|
"type": "string",
|
|
"description": "Environment, versions, or runtime information",
|
|
},
|
|
"previous_attempts": {
|
|
"type": "string",
|
|
"description": "What has been tried already",
|
|
},
|
|
"temperature": {
|
|
"type": "number",
|
|
"description": "Temperature (0-1, default 0.2 for accuracy)",
|
|
"minimum": 0,
|
|
"maximum": 1,
|
|
},
|
|
"thinking_mode": {
|
|
"type": "string",
|
|
"enum": ["minimal", "low", "medium", "high", "max"],
|
|
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
|
|
},
|
|
},
|
|
"required": ["error_description"],
|
|
}
|
|
|
|
def get_system_prompt(self) -> str:
|
|
return DEBUG_ISSUE_PROMPT
|
|
|
|
def get_default_temperature(self) -> float:
|
|
return TEMPERATURE_ANALYTICAL
|
|
|
|
def get_request_model(self):
|
|
return DebugIssueRequest
|
|
|
|
async def execute(self, arguments: Dict[str, Any]) -> List[TextContent]:
|
|
"""Override execute to check error_description and error_context size before processing"""
|
|
# First validate request
|
|
request_model = self.get_request_model()
|
|
request = request_model(**arguments)
|
|
|
|
# Check error_description size
|
|
size_check = self.check_prompt_size(request.error_description)
|
|
if size_check:
|
|
return [
|
|
TextContent(
|
|
type="text", text=ToolOutput(**size_check).model_dump_json()
|
|
)
|
|
]
|
|
|
|
# Check error_context size if provided
|
|
if request.error_context:
|
|
size_check = self.check_prompt_size(request.error_context)
|
|
if size_check:
|
|
return [
|
|
TextContent(
|
|
type="text", text=ToolOutput(**size_check).model_dump_json()
|
|
)
|
|
]
|
|
|
|
# Continue with normal execution
|
|
return await super().execute(arguments)
|
|
|
|
async def prepare_prompt(self, request: DebugIssueRequest) -> str:
|
|
"""Prepare the debugging prompt"""
|
|
# Check for prompt.txt in files
|
|
prompt_content, updated_files = self.handle_prompt_file(request.files)
|
|
|
|
# If prompt.txt was found, use it as error_description or error_context
|
|
# Priority: if error_description is empty, use it there, otherwise use as error_context
|
|
if prompt_content:
|
|
if not request.error_description or request.error_description == "":
|
|
request.error_description = prompt_content
|
|
else:
|
|
request.error_context = prompt_content
|
|
|
|
# Update request files list
|
|
if updated_files is not None:
|
|
request.files = updated_files
|
|
|
|
# Build context sections
|
|
context_parts = [
|
|
f"=== ISSUE DESCRIPTION ===\n{request.error_description}\n=== END DESCRIPTION ==="
|
|
]
|
|
|
|
if request.error_context:
|
|
context_parts.append(
|
|
f"\n=== ERROR CONTEXT/STACK TRACE ===\n{request.error_context}\n=== END CONTEXT ==="
|
|
)
|
|
|
|
if request.runtime_info:
|
|
context_parts.append(
|
|
f"\n=== RUNTIME INFORMATION ===\n{request.runtime_info}\n=== END RUNTIME ==="
|
|
)
|
|
|
|
if request.previous_attempts:
|
|
context_parts.append(
|
|
f"\n=== PREVIOUS ATTEMPTS ===\n{request.previous_attempts}\n=== END ATTEMPTS ==="
|
|
)
|
|
|
|
# Add relevant files if provided
|
|
if request.files:
|
|
file_content, _ = read_files(request.files)
|
|
context_parts.append(
|
|
f"\n=== RELEVANT CODE ===\n{file_content}\n=== END CODE ==="
|
|
)
|
|
|
|
full_context = "\n".join(context_parts)
|
|
|
|
# Check token limits
|
|
self._validate_token_limit(full_context, "Context")
|
|
|
|
# Combine everything
|
|
full_prompt = f"""{self.get_system_prompt()}
|
|
|
|
{full_context}
|
|
|
|
Please debug this issue following the structured format in the system prompt.
|
|
Focus on finding the root cause and providing actionable solutions."""
|
|
|
|
return full_prompt
|
|
|
|
def format_response(self, response: str, request: DebugIssueRequest) -> str:
|
|
"""Format the debugging response"""
|
|
return f"Debug Analysis\n{'=' * 50}\n\n{response}"
|