Files
my-pal-mcp-server/providers/base.py
Fahad 6d237d0970 refactor: moved temperature method from base provider to model capabilities
refactor: model listing cleanup, moved logic to model_capabilities.py
docs: added AGENTS.md for onboarding Codex
2025-10-02 10:25:41 +04:00

318 lines
11 KiB
Python

"""Base interfaces and common behaviour for model providers."""
import base64
import binascii
import logging
import os
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Optional
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from utils.file_types import IMAGES, get_image_mime_type
from .shared import ModelCapabilities, ModelResponse, ProviderType
logger = logging.getLogger(__name__)
class ModelProvider(ABC):
"""Abstract base class for all model backends in the MCP server.
Role
Defines the interface every provider must implement so the registry,
restriction service, and tools have a uniform surface for listing
models, resolving aliases, and executing requests.
Responsibilities
* expose static capability metadata for each supported model via
:class:`ModelCapabilities`
* accept user prompts, forward them to the underlying SDK, and wrap
responses in :class:`ModelResponse`
* report tokenizer counts for budgeting and validation logic
* advertise provider identity (``ProviderType``) so restriction
policies can map environment configuration onto providers
* validate whether a model name or alias is recognised by the provider
Shared helpers like temperature validation, alias resolution, and
restriction-aware ``list_models`` live here so concrete subclasses only
need to supply their catalogue and wire up SDK-specific behaviour.
"""
# All concrete providers must define their supported models
MODEL_CAPABILITIES: dict[str, Any] = {}
# Default maximum image size in MB
DEFAULT_MAX_IMAGE_SIZE_MB = 20.0
def __init__(self, api_key: str, **kwargs):
"""Initialize the provider with API key and optional configuration."""
self.api_key = api_key
self.config = kwargs
@abstractmethod
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific model."""
pass
@abstractmethod
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.3,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using the model.
Args:
prompt: User prompt to send to the model
model_name: Name of the model to use
system_prompt: Optional system prompt for model behavior
temperature: Sampling temperature (0-2)
max_output_tokens: Maximum tokens to generate
**kwargs: Provider-specific parameters
Returns:
ModelResponse with generated content and metadata
"""
pass
@abstractmethod
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text using the specified model's tokenizer."""
pass
@abstractmethod
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
pass
@abstractmethod
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported by this provider."""
pass
def validate_parameters(self, model_name: str, temperature: float, **kwargs) -> None:
"""Validate model parameters against capabilities.
Raises:
ValueError: If parameters are invalid
"""
capabilities = self.get_capabilities(model_name)
# Validate temperature using constraint
if not capabilities.temperature_constraint.validate(temperature):
constraint_desc = capabilities.temperature_constraint.get_description()
raise ValueError(f"Temperature {temperature} is invalid for model {model_name}. {constraint_desc}")
@abstractmethod
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
pass
def get_model_configurations(self) -> dict[str, ModelCapabilities]:
"""Get model configurations for this provider.
This is a hook method that subclasses can override to provide
their model configurations from different sources.
Returns:
Dictionary mapping model names to their ModelCapabilities objects
"""
model_map = getattr(self, "MODEL_CAPABILITIES", None)
if isinstance(model_map, dict) and model_map:
return {k: v for k, v in model_map.items() if isinstance(v, ModelCapabilities)}
return {}
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model shorthand to full name.
This implementation uses the hook methods to support different
model configuration sources.
Args:
model_name: Model name that may be an alias
Returns:
Resolved model name
"""
# Get model configurations from the hook method
model_configs = self.get_model_configurations()
# First check if it's already a base model name (case-sensitive exact match)
if model_name in model_configs:
return model_name
# Check case-insensitively for both base models and aliases
model_name_lower = model_name.lower()
# Check base model names case-insensitively
for base_model in model_configs:
if base_model.lower() == model_name_lower:
return base_model
# Check aliases from the model configurations
alias_map = ModelCapabilities.collect_aliases(model_configs)
for base_model, aliases in alias_map.items():
if any(alias.lower() == model_name_lower for alias in aliases):
return base_model
# If not found, return as-is
return model_name
def list_models(
self,
*,
respect_restrictions: bool = True,
include_aliases: bool = True,
lowercase: bool = False,
unique: bool = False,
) -> list[str]:
"""Return formatted model names supported by this provider.
Args:
respect_restrictions: Apply provider restriction policy.
include_aliases: Include aliases alongside canonical model names.
lowercase: Normalize returned names to lowercase.
unique: Deduplicate names after formatting.
Returns:
List of model names formatted according to the provided options.
"""
model_configs = self.get_model_configurations()
if not model_configs:
return []
restriction_service = None
if respect_restrictions:
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service()
if restriction_service:
allowed_configs = {}
for model_name, config in model_configs.items():
if restriction_service.is_allowed(self.get_provider_type(), model_name):
allowed_configs[model_name] = config
model_configs = allowed_configs
if not model_configs:
return []
return ModelCapabilities.collect_model_names(
model_configs,
include_aliases=include_aliases,
lowercase=lowercase,
unique=unique,
)
def validate_image(self, image_path: str, max_size_mb: float = None) -> tuple[bytes, str]:
"""Provider-independent image validation.
Args:
image_path: Path to image file or data URL
max_size_mb: Maximum allowed image size in MB (defaults to DEFAULT_MAX_IMAGE_SIZE_MB)
Returns:
Tuple of (image_bytes, mime_type)
Raises:
ValueError: If image is invalid
Examples:
# Validate a file path
image_bytes, mime_type = provider.validate_image("/path/to/image.png")
# Validate a data URL
image_bytes, mime_type = provider.validate_image("data:image/png;base64,...")
# Validate with custom size limit
image_bytes, mime_type = provider.validate_image("/path/to/image.jpg", max_size_mb=10.0)
"""
# Use default if not specified
if max_size_mb is None:
max_size_mb = self.DEFAULT_MAX_IMAGE_SIZE_MB
if image_path.startswith("data:"):
# Parse data URL: ...
try:
header, data = image_path.split(",", 1)
mime_type = header.split(";")[0].split(":")[1]
except (ValueError, IndexError) as e:
raise ValueError(f"Invalid data URL format: {e}")
# Validate MIME type using IMAGES constant
valid_mime_types = [get_image_mime_type(ext) for ext in IMAGES]
if mime_type not in valid_mime_types:
raise ValueError(f"Unsupported image type: {mime_type}. Supported types: {', '.join(valid_mime_types)}")
# Decode base64 data
try:
image_bytes = base64.b64decode(data)
except binascii.Error as e:
raise ValueError(f"Invalid base64 data: {e}")
else:
# Handle file path
# Read file first to check if it exists
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
except FileNotFoundError:
raise ValueError(f"Image file not found: {image_path}")
except Exception as e:
raise ValueError(f"Failed to read image file: {e}")
# Validate extension
ext = os.path.splitext(image_path)[1].lower()
if ext not in IMAGES:
raise ValueError(f"Unsupported image format: {ext}. Supported formats: {', '.join(sorted(IMAGES))}")
# Get MIME type
mime_type = get_image_mime_type(ext)
# Validate size
size_mb = len(image_bytes) / (1024 * 1024)
if size_mb > max_size_mb:
raise ValueError(f"Image too large: {size_mb:.1f}MB (max: {max_size_mb}MB)")
return image_bytes, mime_type
def close(self):
"""Clean up any resources held by the provider.
Default implementation does nothing.
Subclasses should override if they hold resources that need cleanup.
"""
# Base implementation: no resources to clean up
return
def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]:
"""Get the preferred model from this provider for a given category.
Args:
category: The tool category requiring a model
allowed_models: Pre-filtered list of model names that are allowed by restrictions
Returns:
Model name if this provider has a preference, None otherwise
"""
# Default implementation - providers can override with specific logic
return None
def get_model_registry(self) -> Optional[dict[str, Any]]:
"""Get the model registry for providers that maintain one.
This is a hook method for providers like CustomProvider that maintain
a dynamic model registry.
Returns:
Model registry dict or None if not applicable
"""
# Default implementation - most providers don't have a registry
return None