Files
my-pal-mcp-server/config.py
Fahad 22a3fb91ed feat: Add comprehensive dynamic configuration system v3.3.0
## Major Features Added

### 🎯 Dynamic Configuration System
- **Environment-aware model selection**: DEFAULT_MODEL with 'pro'/'flash' shortcuts
- **Configurable thinking modes**: DEFAULT_THINKING_MODE_THINKDEEP for extended reasoning
- **All tool schemas now dynamic**: Show actual current defaults instead of hardcoded values
- **Enhanced setup workflow**: Copy from .env.example with smart customization

### 🔧 Model & Thinking Configuration
- **Smart model resolution**: Support both shortcuts ('pro', 'flash') and full model names
- **Thinking mode optimization**: Only apply thinking budget to models that support it
- **Flash model compatibility**: Works without thinking config, still beneficial via system prompts
- **Dynamic schema descriptions**: Tool parameters show current environment values

### 🚀 Enhanced Developer Experience
- **Fail-fast Docker setup**: GEMINI_API_KEY required upfront in docker-compose
- **Comprehensive startup logging**: Shows current model and thinking mode defaults
- **Enhanced get_version tool**: Reports all dynamic configuration values
- **Better .env documentation**: Clear token consumption details and model options

### 🧪 Comprehensive Testing
- **Live model validation**: New simulator test validates Pro vs Flash thinking behavior
- **Dynamic configuration tests**: Verify environment variable overrides work correctly
- **Complete test coverage**: All 139 unit tests pass, including new model config tests

### 📋 Configuration Files Updated
- **docker-compose.yml**: Fail-fast API key validation, thinking mode support
- **setup-docker.sh**: Copy from .env.example instead of manual creation
- **.env.example**: Detailed documentation with token consumption per thinking mode
- **.gitignore**: Added test-setup/ for cleanup

### 🛠 Technical Improvements
- **Removed setup.py**: Fully Docker-based deployment (no longer needed)
- **REDIS_URL smart defaults**: Auto-configured for Docker, still configurable for dev
- **All tools updated**: Consistent dynamic model parameter descriptions
- **Enhanced error handling**: Better model resolution and validation

## Breaking Changes
- Removed setup.py (Docker-only deployment)
- Model parameter descriptions now show actual defaults (dynamic)

## Migration Guide
- Update .env files using new .env.example format
- Use 'pro'/'flash' shortcuts or full model names
- Set DEFAULT_THINKING_MODE_THINKDEEP for custom thinking depth

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-11 20:10:25 +04:00

68 lines
3.2 KiB
Python

"""
Configuration and constants for Gemini MCP Server
This module centralizes all configuration settings for the Gemini MCP Server.
It defines model configurations, token limits, temperature defaults, and other
constants used throughout the application.
Configuration values can be overridden by environment variables where appropriate.
"""
import os
# Version and metadata
# These values are used in server responses and for tracking releases
# IMPORTANT: This is the single source of truth for version and author info
__version__ = "3.3.0" # Semantic versioning: MAJOR.MINOR.PATCH
__updated__ = "2025-06-11" # Last update date in ISO format
__author__ = "Fahad Gilani" # Primary maintainer
# Model configuration
# DEFAULT_MODEL: The default model used for all AI operations
# This should be a stable, high-performance model suitable for code analysis
# Can be overridden by setting DEFAULT_MODEL environment variable
DEFAULT_MODEL = os.getenv("DEFAULT_MODEL", "gemini-2.5-pro-preview-06-05")
# Token allocation for Gemini Pro (1M total capacity)
# MAX_CONTEXT_TOKENS: Total model capacity
# MAX_CONTENT_TOKENS: Available for prompts, conversation history, and files
# RESPONSE_RESERVE_TOKENS: Reserved for model response generation
MAX_CONTEXT_TOKENS = 1_000_000 # 1M tokens total capacity for Gemini Pro
MAX_CONTENT_TOKENS = 800_000 # 800K tokens for content (prompts + files + history)
RESPONSE_RESERVE_TOKENS = 200_000 # 200K tokens reserved for response generation
# Temperature defaults for different tool types
# Temperature controls the randomness/creativity of model responses
# Lower values (0.0-0.3) produce more deterministic, focused responses
# Higher values (0.7-1.0) produce more creative, varied responses
# TEMPERATURE_ANALYTICAL: Used for tasks requiring precision and consistency
# Ideal for code review, debugging, and error analysis where accuracy is critical
TEMPERATURE_ANALYTICAL = 0.2 # For code review, debugging
# TEMPERATURE_BALANCED: Middle ground for general conversations
# Provides a good balance between consistency and helpful variety
TEMPERATURE_BALANCED = 0.5 # For general chat
# TEMPERATURE_CREATIVE: Higher temperature for exploratory tasks
# Used when brainstorming, exploring alternatives, or architectural discussions
TEMPERATURE_CREATIVE = 0.7 # For architecture, deep thinking
# Thinking Mode Defaults
# DEFAULT_THINKING_MODE_THINKDEEP: Default thinking depth for extended reasoning tool
# Higher modes use more computational budget but provide deeper analysis
DEFAULT_THINKING_MODE_THINKDEEP = os.getenv("DEFAULT_THINKING_MODE_THINKDEEP", "high")
# MCP Protocol Limits
# MCP_PROMPT_SIZE_LIMIT: Maximum character size for prompts sent directly through MCP
# The MCP protocol has a combined request+response limit of ~25K tokens.
# To ensure we have enough space for responses, we limit direct prompt input
# to 50K characters (roughly ~10-12K tokens). Larger prompts must be sent
# as files to bypass MCP's token constraints.
MCP_PROMPT_SIZE_LIMIT = 50_000 # 50K characters
# Threading configuration
# Simple Redis-based conversation threading for stateless MCP environment
# Set REDIS_URL environment variable to connect to your Redis instance
REDIS_URL = os.getenv("REDIS_URL", "redis://localhost:6379/0")