352 lines
14 KiB
Python
352 lines
14 KiB
Python
#!/usr/bin/env python3
|
||
"""
|
||
O3 Model Selection Test
|
||
|
||
Tests that O3 models are properly selected and used when explicitly specified,
|
||
regardless of the default model configuration (even when set to auto).
|
||
Validates model selection via server logs.
|
||
"""
|
||
|
||
import datetime
|
||
|
||
from .base_test import BaseSimulatorTest
|
||
|
||
|
||
class O3ModelSelectionTest(BaseSimulatorTest):
|
||
"""Test O3 model selection and usage"""
|
||
|
||
@property
|
||
def test_name(self) -> str:
|
||
return "o3_model_selection"
|
||
|
||
@property
|
||
def test_description(self) -> str:
|
||
return "O3 model selection and usage validation"
|
||
|
||
def run_test(self) -> bool:
|
||
"""Test O3 model selection and usage"""
|
||
try:
|
||
self.logger.info(" Test: O3 model selection and usage validation")
|
||
|
||
# Check which API keys are configured
|
||
import os
|
||
|
||
has_openai = bool(os.environ.get("OPENAI_API_KEY"))
|
||
has_openrouter = bool(os.environ.get("OPENROUTER_API_KEY"))
|
||
|
||
# If only OpenRouter is configured, adjust test expectations
|
||
if has_openrouter and not has_openai:
|
||
self.logger.info(" ℹ️ Only OpenRouter configured - O3 models will be routed through OpenRouter")
|
||
return self._run_openrouter_o3_test()
|
||
|
||
# If neither OpenAI nor OpenRouter is configured, skip the test
|
||
if not has_openai and not has_openrouter:
|
||
self.logger.info(" ⚠️ Neither OpenAI nor OpenRouter API keys configured - skipping test")
|
||
self.logger.info(
|
||
" ℹ️ This test requires either OPENAI_API_KEY or OPENROUTER_API_KEY to be set in .env"
|
||
)
|
||
self.logger.info(" ✅ Test skipped (no API keys configured)")
|
||
return True # Return True to indicate test passed/skipped
|
||
|
||
# Original test for when OpenAI is configured
|
||
self.logger.info(" ℹ️ OpenAI API configured - expecting direct OpenAI API calls")
|
||
|
||
# Setup test files for later use
|
||
self.setup_test_files()
|
||
|
||
# Get timestamp for log filtering
|
||
datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
||
|
||
# Test 1: Explicit O3 model selection
|
||
self.logger.info(" 1: Testing explicit O3 model selection")
|
||
|
||
response1, _ = self.call_mcp_tool(
|
||
"chat",
|
||
{
|
||
"prompt": "Simple test: What is 2 + 2? Just give a brief answer.",
|
||
"model": "o3",
|
||
"temperature": 1.0, # O3 only supports default temperature of 1.0
|
||
},
|
||
)
|
||
|
||
if not response1:
|
||
self.logger.error(" ❌ O3 model test failed")
|
||
return False
|
||
|
||
self.logger.info(" ✅ O3 model call completed")
|
||
|
||
# Test 2: Explicit O3-mini model selection
|
||
self.logger.info(" 2: Testing explicit O3-mini model selection")
|
||
|
||
response2, _ = self.call_mcp_tool(
|
||
"chat",
|
||
{
|
||
"prompt": "Simple test: What is 3 + 3? Just give a brief answer.",
|
||
"model": "o3-mini",
|
||
"temperature": 1.0, # O3-mini only supports default temperature of 1.0
|
||
},
|
||
)
|
||
|
||
if not response2:
|
||
self.logger.error(" ❌ O3-mini model test failed")
|
||
return False
|
||
|
||
self.logger.info(" ✅ O3-mini model call completed")
|
||
|
||
# Test 3: Another tool with O3 to ensure it works across tools
|
||
self.logger.info(" 3: Testing O3 with different tool (codereview)")
|
||
|
||
# Create a simple test file
|
||
test_code = """def add(a, b):
|
||
return a + b
|
||
|
||
def multiply(x, y):
|
||
return x * y
|
||
"""
|
||
test_file = self.create_additional_test_file("simple_math.py", test_code)
|
||
|
||
response3, _ = self.call_mcp_tool(
|
||
"codereview",
|
||
{
|
||
"step": "Review this simple code for quality and potential issues",
|
||
"step_number": 1,
|
||
"total_steps": 1,
|
||
"next_step_required": False,
|
||
"findings": "Starting code review analysis",
|
||
"relevant_files": [test_file],
|
||
"model": "o3",
|
||
"temperature": 1.0, # O3 only supports default temperature of 1.0
|
||
},
|
||
)
|
||
|
||
if not response3:
|
||
self.logger.error(" ❌ O3 with codereview tool failed")
|
||
return False
|
||
|
||
self.logger.info(" ✅ O3 with codereview tool completed")
|
||
|
||
# Validate model usage from server logs
|
||
self.logger.info(" 4: Validating model usage in logs")
|
||
logs = self.get_recent_server_logs()
|
||
|
||
# Check for OpenAI API calls (this proves O3 models are being used)
|
||
openai_api_logs = [line for line in logs.split("\n") if "Sending request to openai API for" in line]
|
||
|
||
# Check for OpenAI model usage logs
|
||
openai_model_logs = [
|
||
line for line in logs.split("\n") if "Using model:" in line and "openai provider" in line
|
||
]
|
||
|
||
# Check for successful OpenAI responses
|
||
openai_response_logs = [
|
||
line for line in logs.split("\n") if "openai provider" in line and "Using model:" in line
|
||
]
|
||
|
||
# Check that we have both chat and codereview tool calls to OpenAI
|
||
chat_openai_logs = [line for line in logs.split("\n") if "Sending request to openai API for chat" in line]
|
||
|
||
codereview_openai_logs = [
|
||
line for line in logs.split("\n") if "Sending request to openai API for codereview" in line
|
||
]
|
||
|
||
# Validation criteria - check for OpenAI usage evidence (more flexible than exact counts)
|
||
openai_api_called = len(openai_api_logs) >= 1 # Should see at least 1 OpenAI API call
|
||
openai_model_usage = len(openai_model_logs) >= 1 # Should see at least 1 model usage log
|
||
openai_responses_received = len(openai_response_logs) >= 1 # Should see at least 1 response
|
||
some_chat_calls_to_openai = len(chat_openai_logs) >= 1 # Should see at least 1 chat call
|
||
some_workflow_calls_to_openai = (
|
||
len(codereview_openai_logs) >= 1
|
||
or len([line for line in logs.split("\n") if "openai" in line and "codereview" in line]) > 0
|
||
) # Should see evidence of workflow tool usage
|
||
|
||
self.logger.info(f" OpenAI API call logs: {len(openai_api_logs)}")
|
||
self.logger.info(f" OpenAI model usage logs: {len(openai_model_logs)}")
|
||
self.logger.info(f" OpenAI response logs: {len(openai_response_logs)}")
|
||
self.logger.info(f" Chat calls to OpenAI: {len(chat_openai_logs)}")
|
||
self.logger.info(f" Codereview calls to OpenAI: {len(codereview_openai_logs)}")
|
||
|
||
# Log sample evidence for debugging
|
||
if self.verbose and openai_api_logs:
|
||
self.logger.debug(" 📋 Sample OpenAI API logs:")
|
||
for log in openai_api_logs[:5]:
|
||
self.logger.debug(f" {log}")
|
||
|
||
if self.verbose and chat_openai_logs:
|
||
self.logger.debug(" 📋 Sample chat OpenAI logs:")
|
||
for log in chat_openai_logs[:3]:
|
||
self.logger.debug(f" {log}")
|
||
|
||
# Success criteria
|
||
success_criteria = [
|
||
("OpenAI API calls made", openai_api_called),
|
||
("OpenAI model usage logged", openai_model_usage),
|
||
("OpenAI responses received", openai_responses_received),
|
||
("Chat tool used OpenAI", some_chat_calls_to_openai),
|
||
(
|
||
"Workflow tool attempted",
|
||
some_workflow_calls_to_openai or response3 is not None,
|
||
), # More flexible check
|
||
]
|
||
|
||
passed_criteria = sum(1 for _, passed in success_criteria if passed)
|
||
self.logger.info(f" Success criteria met: {passed_criteria}/{len(success_criteria)}")
|
||
|
||
for criterion, passed in success_criteria:
|
||
status = "✅" if passed else "❌"
|
||
self.logger.info(f" {status} {criterion}")
|
||
|
||
if passed_criteria >= 3: # At least 3 out of 5 criteria
|
||
self.logger.info(" ✅ O3 model selection validation passed")
|
||
return True
|
||
else:
|
||
self.logger.error(" ❌ O3 model selection validation failed")
|
||
return False
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"O3 model selection test failed: {e}")
|
||
return False
|
||
finally:
|
||
self.cleanup_test_files()
|
||
|
||
def _run_openrouter_o3_test(self) -> bool:
|
||
"""Test O3 model selection when using OpenRouter"""
|
||
try:
|
||
# Setup test files
|
||
self.setup_test_files()
|
||
|
||
# Test 1: O3 model via OpenRouter
|
||
self.logger.info(" 1: Testing O3 model via OpenRouter")
|
||
|
||
response1, _ = self.call_mcp_tool(
|
||
"chat",
|
||
{
|
||
"prompt": "Simple test: What is 2 + 2? Just give a brief answer.",
|
||
"model": "o3",
|
||
"temperature": 1.0,
|
||
},
|
||
)
|
||
|
||
if not response1:
|
||
self.logger.error(" ❌ O3 model test via OpenRouter failed")
|
||
return False
|
||
|
||
self.logger.info(" ✅ O3 model call via OpenRouter completed")
|
||
|
||
# Test 2: O3-mini model via OpenRouter
|
||
self.logger.info(" 2: Testing O3-mini model via OpenRouter")
|
||
|
||
response2, _ = self.call_mcp_tool(
|
||
"chat",
|
||
{
|
||
"prompt": "Simple test: What is 3 + 3? Just give a brief answer.",
|
||
"model": "o3-mini",
|
||
"temperature": 1.0,
|
||
},
|
||
)
|
||
|
||
if not response2:
|
||
self.logger.error(" ❌ O3-mini model test via OpenRouter failed")
|
||
return False
|
||
|
||
self.logger.info(" ✅ O3-mini model call via OpenRouter completed")
|
||
|
||
# Test 3: Codereview with O3 via OpenRouter
|
||
self.logger.info(" 3: Testing O3 with codereview tool via OpenRouter")
|
||
|
||
test_code = """def add(a, b):
|
||
return a + b
|
||
|
||
def multiply(x, y):
|
||
return x * y
|
||
"""
|
||
test_file = self.create_additional_test_file("simple_math.py", test_code)
|
||
|
||
response3, _ = self.call_mcp_tool(
|
||
"codereview",
|
||
{
|
||
"step": "Review this simple code for quality and potential issues",
|
||
"step_number": 1,
|
||
"total_steps": 1,
|
||
"next_step_required": False,
|
||
"findings": "Starting code review analysis",
|
||
"relevant_files": [test_file],
|
||
"model": "o3",
|
||
"temperature": 1.0,
|
||
},
|
||
)
|
||
|
||
if not response3:
|
||
self.logger.error(" ❌ O3 with codereview tool via OpenRouter failed")
|
||
return False
|
||
|
||
self.logger.info(" ✅ O3 with codereview tool via OpenRouter completed")
|
||
|
||
# Validate OpenRouter usage in logs
|
||
self.logger.info(" 4: Validating OpenRouter usage in logs")
|
||
logs = self.get_recent_server_logs()
|
||
|
||
# Check for OpenRouter API calls
|
||
openrouter_api_logs = [
|
||
line
|
||
for line in logs.split("\n")
|
||
if "openrouter" in line.lower() and ("API" in line or "request" in line)
|
||
]
|
||
|
||
# Check for model resolution through OpenRouter
|
||
openrouter_model_logs = [
|
||
line for line in logs.split("\n") if "openrouter" in line.lower() and ("o3" in line or "model" in line)
|
||
]
|
||
|
||
# Check for successful responses
|
||
openrouter_response_logs = [
|
||
line for line in logs.split("\n") if "openrouter" in line.lower() and "response" in line
|
||
]
|
||
|
||
self.logger.info(f" OpenRouter API logs: {len(openrouter_api_logs)}")
|
||
self.logger.info(f" OpenRouter model logs: {len(openrouter_model_logs)}")
|
||
self.logger.info(f" OpenRouter response logs: {len(openrouter_response_logs)}")
|
||
|
||
# Success criteria for OpenRouter
|
||
openrouter_used = len(openrouter_api_logs) >= 3 or len(openrouter_model_logs) >= 3
|
||
all_calls_succeeded = response1 and response2 and response3
|
||
|
||
success_criteria = [
|
||
("All O3 model calls succeeded", all_calls_succeeded),
|
||
("OpenRouter provider was used", openrouter_used),
|
||
]
|
||
|
||
passed_criteria = sum(1 for _, passed in success_criteria if passed)
|
||
self.logger.info(f" Success criteria met: {passed_criteria}/{len(success_criteria)}")
|
||
|
||
for criterion, passed in success_criteria:
|
||
status = "✅" if passed else "❌"
|
||
self.logger.info(f" {status} {criterion}")
|
||
|
||
if passed_criteria == len(success_criteria):
|
||
self.logger.info(" ✅ O3 model selection via OpenRouter passed")
|
||
return True
|
||
else:
|
||
self.logger.error(" ❌ O3 model selection via OpenRouter failed")
|
||
return False
|
||
|
||
except Exception as e:
|
||
self.logger.error(f"OpenRouter O3 test failed: {e}")
|
||
return False
|
||
finally:
|
||
self.cleanup_test_files()
|
||
|
||
|
||
def main():
|
||
"""Run the O3 model selection tests"""
|
||
import sys
|
||
|
||
verbose = "--verbose" in sys.argv or "-v" in sys.argv
|
||
test = O3ModelSelectionTest(verbose=verbose)
|
||
|
||
success = test.run_test()
|
||
sys.exit(0 if success else 1)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|