Files
my-pal-mcp-server/tests/test_debug.py
2025-06-19 17:54:45 +04:00

651 lines
27 KiB
Python

"""
Tests for the debug tool.
"""
from unittest.mock import patch
import pytest
from tools.debug import DebugInvestigationRequest, DebugIssueTool
from tools.models import ToolModelCategory
class TestDebugTool:
"""Test suite for DebugIssueTool."""
def test_tool_metadata(self):
"""Test basic tool metadata and configuration."""
tool = DebugIssueTool()
assert tool.get_name() == "debug"
assert "DEBUG & ROOT CAUSE ANALYSIS" in tool.get_description()
assert tool.get_default_temperature() == 0.2 # TEMPERATURE_ANALYTICAL
assert tool.get_model_category() == ToolModelCategory.EXTENDED_REASONING
assert tool.requires_model() is True # Requires model resolution for expert analysis
def test_request_validation(self):
"""Test Pydantic request model validation."""
# Valid investigation step request
step_request = DebugInvestigationRequest(
step="Investigating null pointer exception in UserService",
step_number=1,
total_steps=5,
next_step_required=True,
findings="Found that UserService.getUser() is called with null ID",
)
assert step_request.step == "Investigating null pointer exception in UserService"
assert step_request.step_number == 1
assert step_request.next_step_required is True
assert step_request.confidence == "low" # default
# Request with optional fields
detailed_request = DebugInvestigationRequest(
step="Deep dive into getUser method implementation",
step_number=2,
total_steps=5,
next_step_required=True,
findings="Method doesn't validate input parameters",
files_checked=["/src/UserService.java", "/src/UserController.java"],
relevant_files=["/src/UserService.java"],
relevant_methods=["UserService.getUser", "UserController.handleRequest"],
hypothesis="Null ID passed from controller without validation",
confidence="medium",
)
assert len(detailed_request.files_checked) == 2
assert len(detailed_request.relevant_files) == 1
assert detailed_request.confidence == "medium"
# Missing required fields should fail
with pytest.raises(ValueError):
DebugInvestigationRequest() # Missing all required fields
with pytest.raises(ValueError):
DebugInvestigationRequest(step="test") # Missing other required fields
def test_input_schema_generation(self):
"""Test JSON schema generation for MCP client."""
tool = DebugIssueTool()
schema = tool.get_input_schema()
assert schema["type"] == "object"
# Investigation fields
assert "step" in schema["properties"]
assert "step_number" in schema["properties"]
assert "total_steps" in schema["properties"]
assert "next_step_required" in schema["properties"]
assert "findings" in schema["properties"]
assert "files_checked" in schema["properties"]
assert "relevant_files" in schema["properties"]
assert "relevant_methods" in schema["properties"]
assert "hypothesis" in schema["properties"]
assert "confidence" in schema["properties"]
assert "backtrack_from_step" in schema["properties"]
assert "continuation_id" in schema["properties"]
assert "images" in schema["properties"] # Now supported for visual debugging
# Check model field is present (fixed from previous bug)
assert "model" in schema["properties"]
# Check excluded fields are NOT present
assert "temperature" not in schema["properties"]
assert "thinking_mode" not in schema["properties"]
assert "use_websearch" not in schema["properties"]
# Check required fields
assert "step" in schema["required"]
assert "step_number" in schema["required"]
assert "total_steps" in schema["required"]
assert "next_step_required" in schema["required"]
assert "findings" in schema["required"]
def test_model_category_for_debugging(self):
"""Test that debug uses extended reasoning category."""
tool = DebugIssueTool()
category = tool.get_model_category()
# Debugging needs deep thinking
assert category == ToolModelCategory.EXTENDED_REASONING
@pytest.mark.asyncio
async def test_execute_first_investigation_step(self):
"""Test execute method for first investigation step."""
tool = DebugIssueTool()
arguments = {
"step": "Investigating intermittent session validation failures in production",
"step_number": 1,
"total_steps": 5,
"next_step_required": True,
"findings": "Users report random session invalidation, occurs more during high traffic",
"files_checked": ["/api/session_manager.py"],
"relevant_files": ["/api/session_manager.py"],
}
# Mock conversation memory functions
with patch("utils.conversation_memory.create_thread", return_value="debug-uuid-123"):
with patch("utils.conversation_memory.add_turn"):
result = await tool.execute(arguments)
# Should return a list with TextContent
assert len(result) == 1
assert result[0].type == "text"
# Parse the JSON response
import json
parsed_response = json.loads(result[0].text)
# Debug tool now returns "pause_for_investigation" for ongoing steps
assert parsed_response["status"] == "pause_for_investigation"
assert parsed_response["step_number"] == 1
assert parsed_response["total_steps"] == 5
assert parsed_response["next_step_required"] is True
assert parsed_response["continuation_id"] == "debug-uuid-123"
assert parsed_response["investigation_status"]["files_checked"] == 1
assert parsed_response["investigation_status"]["relevant_files"] == 1
assert parsed_response["investigation_required"] is True
assert "required_actions" in parsed_response
@pytest.mark.asyncio
async def test_execute_subsequent_investigation_step(self):
"""Test execute method for subsequent investigation step."""
tool = DebugIssueTool()
# Set up initial state
tool.initial_issue = "Session validation failures"
tool.consolidated_findings["files_checked"].add("/api/session_manager.py")
arguments = {
"step": "Examining session cleanup method for concurrent modification issues",
"step_number": 2,
"total_steps": 5,
"next_step_required": True,
"findings": "Found dictionary modification during iteration in cleanup_expired_sessions",
"files_checked": ["/api/session_manager.py", "/api/utils.py"],
"relevant_files": ["/api/session_manager.py"],
"relevant_methods": ["SessionManager.cleanup_expired_sessions"],
"hypothesis": "Dictionary modified during iteration causing RuntimeError",
"confidence": "high",
"continuation_id": "debug-uuid-123",
}
# Mock conversation memory functions
with patch("utils.conversation_memory.add_turn"):
result = await tool.execute(arguments)
# Should return a list with TextContent
assert len(result) == 1
assert result[0].type == "text"
# Parse the JSON response
import json
parsed_response = json.loads(result[0].text)
assert parsed_response["step_number"] == 2
assert parsed_response["next_step_required"] is True
assert parsed_response["continuation_id"] == "debug-uuid-123"
assert parsed_response["investigation_status"]["files_checked"] == 2 # Cumulative
assert parsed_response["investigation_status"]["relevant_methods"] == 1
assert parsed_response["investigation_status"]["current_confidence"] == "high"
@pytest.mark.asyncio
async def test_execute_final_investigation_step(self):
"""Test execute method for final investigation step with expert analysis."""
tool = DebugIssueTool()
# Set up investigation history
tool.initial_issue = "Session validation failures"
tool.investigation_history = [
{
"step_number": 1,
"step": "Initial investigation of session validation failures",
"findings": "Initial investigation",
"files_checked": ["/api/utils.py"],
},
{
"step_number": 2,
"step": "Deeper analysis of session manager",
"findings": "Found dictionary issue",
"files_checked": ["/api/session_manager.py"],
},
]
tool.consolidated_findings = {
"files_checked": {"/api/session_manager.py", "/api/utils.py"},
"relevant_files": {"/api/session_manager.py"},
"relevant_methods": {"SessionManager.cleanup_expired_sessions"},
"findings": ["Step 1: Initial investigation", "Step 2: Found dictionary issue"],
"hypotheses": [{"step": 2, "hypothesis": "Dictionary modified during iteration", "confidence": "high"}],
"images": [],
}
arguments = {
"step": "Confirmed the root cause and identified fix",
"step_number": 3,
"total_steps": 3,
"next_step_required": False, # Final step
"findings": "Root cause confirmed: dictionary modification during iteration in cleanup method",
"files_checked": ["/api/session_manager.py"],
"relevant_files": ["/api/session_manager.py"],
"relevant_methods": ["SessionManager.cleanup_expired_sessions"],
"hypothesis": "Dictionary modification during iteration causes intermittent RuntimeError",
"confidence": "high",
"continuation_id": "debug-uuid-123",
}
# Mock the expert analysis call
mock_expert_response = {
"status": "analysis_complete",
"summary": "Dictionary modification during iteration bug identified",
"hypotheses": [
{
"name": "CONCURRENT_MODIFICATION",
"confidence": "High",
"root_cause": "Modifying dictionary while iterating",
"minimal_fix": "Create list of keys to delete first",
}
],
}
# Mock conversation memory and file reading
with patch("utils.conversation_memory.add_turn"):
with patch.object(tool, "_call_expert_analysis", return_value=mock_expert_response):
with patch.object(tool, "_prepare_file_content_for_prompt", return_value=("file content", 100)):
result = await tool.execute(arguments)
# Should return a list with TextContent
assert len(result) == 1
response_text = result[0].text
# Parse the JSON response
import json
parsed_response = json.loads(response_text)
# Check final step structure
assert parsed_response["status"] == "calling_expert_analysis"
assert parsed_response["investigation_complete"] is True
assert parsed_response["expert_analysis"]["status"] == "analysis_complete"
assert "complete_investigation" in parsed_response
assert parsed_response["complete_investigation"]["steps_taken"] == 3 # All steps including current
@pytest.mark.asyncio
async def test_execute_with_backtracking(self):
"""Test execute method with backtracking to revise findings."""
tool = DebugIssueTool()
# Set up some investigation history with all required fields
tool.investigation_history = [
{
"step": "Initial investigation",
"step_number": 1,
"findings": "Initial findings",
"files_checked": ["file1.py"],
"relevant_files": [],
"relevant_methods": [],
"hypothesis": None,
"confidence": "low",
},
{
"step": "Wrong direction",
"step_number": 2,
"findings": "Wrong path",
"files_checked": ["file2.py"],
"relevant_files": [],
"relevant_methods": [],
"hypothesis": None,
"confidence": "low",
},
]
tool.consolidated_findings = {
"files_checked": {"file1.py", "file2.py"},
"relevant_files": set(),
"relevant_methods": set(),
"findings": ["Step 1: Initial findings", "Step 2: Wrong path"],
"hypotheses": [],
"images": [],
}
arguments = {
"step": "Backtracking to revise approach",
"step_number": 3,
"total_steps": 5,
"next_step_required": True,
"findings": "Taking a different investigation approach",
"files_checked": ["file3.py"],
"backtrack_from_step": 2, # Backtrack from step 2
"continuation_id": "debug-uuid-123",
}
# Mock conversation memory functions
with patch("utils.conversation_memory.add_turn"):
result = await tool.execute(arguments)
# Should return a list with TextContent
# Debug tool now returns "pause_for_investigation" for ongoing steps
assert len(result) == 1
response_text = result[0].text
# Parse the JSON response
import json
parsed_response = json.loads(response_text)
assert parsed_response["status"] == "pause_for_investigation"
# After backtracking from step 2, history should have step 1 plus the new step
assert len(tool.investigation_history) == 2 # Step 1 + new step 3
assert tool.investigation_history[0]["step_number"] == 1
assert tool.investigation_history[1]["step_number"] == 3 # The new step that triggered backtrack
@pytest.mark.asyncio
async def test_execute_adjusts_total_steps(self):
"""Test execute method adjusts total steps when current step exceeds estimate."""
tool = DebugIssueTool()
arguments = {
"step": "Additional investigation needed",
"step_number": 8,
"total_steps": 5, # Current step exceeds total
"next_step_required": True,
"findings": "More complexity discovered",
"continuation_id": "debug-uuid-123",
}
# Mock conversation memory functions
with patch("utils.conversation_memory.add_turn"):
result = await tool.execute(arguments)
# Should return a list with TextContent
assert len(result) == 1
response_text = result[0].text
# Parse the JSON response
import json
parsed_response = json.loads(response_text)
# Total steps should be adjusted to match current step
assert parsed_response["total_steps"] == 8
assert parsed_response["step_number"] == 8
@pytest.mark.asyncio
async def test_execute_error_handling(self):
"""Test execute method error handling."""
tool = DebugIssueTool()
# Invalid arguments - missing required fields
arguments = {
"step": "Invalid request"
# Missing required fields
}
result = await tool.execute(arguments)
# Should return error response
assert len(result) == 1
response_text = result[0].text
# Parse the JSON response
import json
parsed_response = json.loads(response_text)
assert parsed_response["status"] == "investigation_failed"
assert "error" in parsed_response
@pytest.mark.asyncio
async def test_execute_with_string_instead_of_list_fields(self):
"""Test execute method handles string inputs for list fields gracefully."""
tool = DebugIssueTool()
arguments = {
"step": "Investigating issue with string inputs",
"step_number": 1,
"total_steps": 3,
"next_step_required": True,
"findings": "Testing string input handling",
# These should be lists but passing strings to test the fix
"files_checked": "relevant_files", # String instead of list
"relevant_files": "some_string", # String instead of list
"relevant_methods": "another_string", # String instead of list
}
# Mock conversation memory functions
with patch("utils.conversation_memory.create_thread", return_value="debug-string-test"):
with patch("utils.conversation_memory.add_turn"):
# Should handle gracefully without crashing
result = await tool.execute(arguments)
# Should return a valid response
assert len(result) == 1
assert result[0].type == "text"
# Parse the JSON response
import json
parsed_response = json.loads(result[0].text)
# Should complete successfully with empty lists
assert parsed_response["status"] == "pause_for_investigation"
assert parsed_response["step_number"] == 1
assert parsed_response["investigation_status"]["files_checked"] == 0 # Empty due to string conversion
assert parsed_response["investigation_status"]["relevant_files"] == 0
assert parsed_response["investigation_status"]["relevant_methods"] == 0
# Verify internal state - should have empty sets, not individual characters
assert tool.consolidated_findings["files_checked"] == set()
assert tool.consolidated_findings["relevant_files"] == set()
assert tool.consolidated_findings["relevant_methods"] == set()
# Should NOT have individual characters like {'r', 'e', 'l', 'e', 'v', 'a', 'n', 't', '_', 'f', 'i', 'l', 'e', 's'}
def test_prepare_investigation_summary(self):
"""Test investigation summary preparation."""
tool = DebugIssueTool()
tool.consolidated_findings = {
"files_checked": {"file1.py", "file2.py", "file3.py"},
"relevant_files": {"file1.py", "file2.py"},
"relevant_methods": {"Class1.method1", "Class2.method2"},
"findings": [
"Step 1: Initial investigation findings",
"Step 2: Discovered potential issue",
"Step 3: Confirmed root cause",
],
"hypotheses": [
{"step": 1, "hypothesis": "Initial hypothesis", "confidence": "low"},
{"step": 2, "hypothesis": "Refined hypothesis", "confidence": "medium"},
{"step": 3, "hypothesis": "Final hypothesis", "confidence": "high"},
],
"images": [],
}
summary = tool._prepare_investigation_summary()
assert "SYSTEMATIC INVESTIGATION SUMMARY" in summary
assert "Files examined: 3" in summary
assert "Relevant files identified: 2" in summary
assert "Methods/functions involved: 2" in summary
assert "INVESTIGATION PROGRESSION" in summary
assert "Step 1:" in summary
assert "Step 2:" in summary
assert "Step 3:" in summary
assert "HYPOTHESIS EVOLUTION" in summary
assert "low confidence" in summary
assert "medium confidence" in summary
assert "high confidence" in summary
def test_extract_error_context(self):
"""Test error context extraction from findings."""
tool = DebugIssueTool()
tool.consolidated_findings = {
"findings": [
"Step 1: Found no issues initially",
"Step 2: Discovered ERROR: Dictionary size changed during iteration",
"Step 3: Stack trace shows RuntimeError in cleanup method",
"Step 4: Exception occurs intermittently",
],
}
error_context = tool._extract_error_context()
assert error_context is not None
assert "ERROR: Dictionary size changed" in error_context
assert "Stack trace shows RuntimeError" in error_context
assert "Exception occurs intermittently" in error_context
assert "Found no issues initially" not in error_context # Should not include non-error findings
def test_reprocess_consolidated_findings(self):
"""Test reprocessing of consolidated findings after backtracking."""
tool = DebugIssueTool()
tool.investigation_history = [
{
"step_number": 1,
"findings": "Initial findings",
"files_checked": ["file1.py"],
"relevant_files": ["file1.py"],
"relevant_methods": ["method1"],
"hypothesis": "Initial hypothesis",
"confidence": "low",
},
{
"step_number": 2,
"findings": "Second findings",
"files_checked": ["file2.py"],
"relevant_files": [],
"relevant_methods": ["method2"],
},
]
tool._reprocess_consolidated_findings()
assert tool.consolidated_findings["files_checked"] == {"file1.py", "file2.py"}
assert tool.consolidated_findings["relevant_files"] == {"file1.py"}
assert tool.consolidated_findings["relevant_methods"] == {"method1", "method2"}
assert len(tool.consolidated_findings["findings"]) == 2
assert len(tool.consolidated_findings["hypotheses"]) == 1
assert tool.consolidated_findings["hypotheses"][0]["hypothesis"] == "Initial hypothesis"
# Integration test
class TestDebugToolIntegration:
"""Integration tests for debug tool."""
def setup_method(self):
"""Set up model context for integration tests."""
from utils.model_context import ModelContext
self.tool = DebugIssueTool()
self.tool._model_context = ModelContext("flash") # Test model
@pytest.mark.asyncio
async def test_complete_investigation_flow(self):
"""Test complete investigation flow from start to expert analysis."""
# Step 1: Initial investigation
arguments = {
"step": "Investigating memory leak in data processing pipeline",
"step_number": 1,
"total_steps": 3,
"next_step_required": True,
"findings": "High memory usage observed during batch processing",
"files_checked": ["/processor/main.py"],
}
# Mock conversation memory and expert analysis
with patch("utils.conversation_memory.create_thread", return_value="debug-flow-uuid"):
with patch("utils.conversation_memory.add_turn"):
result = await self.tool.execute(arguments)
# Verify response structure
# Debug tool now returns "pause_for_investigation" for ongoing steps
assert len(result) == 1
response_text = result[0].text
# Parse the JSON response
import json
parsed_response = json.loads(response_text)
assert parsed_response["status"] == "pause_for_investigation"
assert parsed_response["step_number"] == 1
assert parsed_response["continuation_id"] == "debug-flow-uuid"
@pytest.mark.asyncio
async def test_model_context_initialization_in_expert_analysis(self):
"""Real integration test that model context is properly initialized when expert analysis is called."""
tool = DebugIssueTool()
# Do NOT manually set up model context - let the method do it itself
# Set up investigation state for final step
tool.initial_issue = "Memory leak investigation"
tool.investigation_history = [
{
"step_number": 1,
"step": "Initial investigation",
"findings": "Found memory issues",
"files_checked": [],
}
]
tool.consolidated_findings = {
"files_checked": set(),
"relevant_files": set(), # No files to avoid file I/O in this test
"relevant_methods": {"process_data"},
"findings": ["Step 1: Found memory issues"],
"hypotheses": [],
"images": [],
}
# Test the _call_expert_analysis method directly to verify ModelContext is properly handled
# This is the real test - we're testing that the method can be called without the ModelContext error
try:
# Only mock the API call itself, not the model resolution infrastructure
from unittest.mock import MagicMock
mock_provider = MagicMock()
mock_response = MagicMock()
mock_response.content = '{"status": "analysis_complete", "summary": "Test completed"}'
mock_provider.generate_content.return_value = mock_response
# Use the real get_model_provider method but override its result to avoid API calls
original_get_provider = tool.get_model_provider
tool.get_model_provider = lambda model_name: mock_provider
try:
# Create mock arguments and request for model resolution
from tools.debug import DebugInvestigationRequest
mock_arguments = {"model": None} # No model specified, should fall back to DEFAULT_MODEL
mock_request = DebugInvestigationRequest(
step="Test step", step_number=1, total_steps=1, next_step_required=False, findings="Test findings"
)
# This should NOT raise a ModelContext error - the method should set up context itself
result = await tool._call_expert_analysis(
initial_issue="Test issue",
investigation_summary="Test summary",
relevant_files=[], # Empty to avoid file operations
relevant_methods=["test_method"],
final_hypothesis="Test hypothesis",
error_context=None,
images=[],
model_info=None, # No pre-resolved model info
arguments=mock_arguments, # Provide arguments for model resolution
request=mock_request, # Provide request for model resolution
)
# Should complete without ModelContext error
assert "error" not in result
assert result["status"] == "analysis_complete"
# Verify the model context was actually set up
assert hasattr(tool, "_model_context")
assert hasattr(tool, "_current_model_name")
# Should use DEFAULT_MODEL when no model specified
from config import DEFAULT_MODEL
assert tool._current_model_name == DEFAULT_MODEL
finally:
# Restore original method
tool.get_model_provider = original_get_provider
except RuntimeError as e:
if "ModelContext not initialized" in str(e):
pytest.fail("ModelContext error still occurs - the fix is not working properly")
else:
raise # Re-raise other RuntimeErrors