Files
my-pal-mcp-server/tools/thinkdeep.py
Fahad 4becd70a82 Perform prompt size checks only at the MCP boundary
New test to confirm history build-up and system prompt does not affect prompt size checks
Also check for large prompts in focus_on
Fixed .env.example incorrectly did not comment out CUSTOM_API causing the run-server script to think at least one key exists
2025-06-15 10:37:08 +04:00

214 lines
9.4 KiB
Python

"""
ThinkDeep tool - Extended reasoning and problem-solving
"""
from typing import TYPE_CHECKING, Any, Optional
from pydantic import Field
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from config import TEMPERATURE_CREATIVE
from systemprompts import THINKDEEP_PROMPT
from .base import BaseTool, ToolRequest
class ThinkDeepRequest(ToolRequest):
"""Request model for thinkdeep tool"""
prompt: str = Field(..., description="Your current thinking/analysis to extend and validate")
problem_context: Optional[str] = Field(None, description="Additional context about the problem or goal")
focus_areas: Optional[list[str]] = Field(
None,
description="Specific aspects to focus on (architecture, performance, security, etc.)",
)
files: Optional[list[str]] = Field(
None,
description="Optional file paths or directories for additional context (must be absolute paths)",
)
class ThinkDeepTool(BaseTool):
"""Extended thinking and reasoning tool"""
def get_name(self) -> str:
return "thinkdeep"
def get_description(self) -> str:
return (
"EXTENDED THINKING & REASONING - Your deep thinking partner for complex problems. "
"Use this when you need to think deeper about a problem, extend your analysis, explore alternatives, or validate approaches. "
"Perfect for: architecture decisions, complex bugs, performance challenges, security analysis. "
"I'll challenge assumptions, find edge cases, and provide alternative solutions. "
"IMPORTANT: Choose the appropriate thinking_mode based on task complexity - "
"'low' for quick analysis, 'medium' for standard problems, 'high' for complex issues (default), "
"'max' for extremely complex challenges requiring deepest analysis. "
"When in doubt, err on the side of a higher mode for truly deep thought and evaluation. "
"Note: If you're not currently using a top-tier model such as Opus 4 or above, these tools can provide enhanced capabilities."
)
def get_input_schema(self) -> dict[str, Any]:
schema = {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "Your current thinking/analysis to extend and validate",
},
"model": self.get_model_field_schema(),
"problem_context": {
"type": "string",
"description": "Additional context about the problem or goal",
},
"focus_areas": {
"type": "array",
"items": {"type": "string"},
"description": "Specific aspects to focus on (architecture, performance, security, etc.)",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Optional file paths or directories for additional context (must be absolute paths)",
},
"temperature": {
"type": "number",
"description": "Temperature for creative thinking (0-1, default 0.7)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": f"Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), max (100% of model max). Defaults to '{self.get_default_thinking_mode()}' if not specified.",
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
"default": True,
},
"continuation_id": {
"type": "string",
"description": "Thread continuation ID for multi-turn conversations. Can be used to continue conversations across different tools. Only provide this if continuing a previous conversation thread.",
},
},
"required": ["prompt"] + (["model"] if self.is_effective_auto_mode() else []),
}
return schema
def get_system_prompt(self) -> str:
return THINKDEEP_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_CREATIVE
def get_default_thinking_mode(self) -> str:
"""ThinkDeep uses configurable thinking mode, defaults to high"""
from config import DEFAULT_THINKING_MODE_THINKDEEP
return DEFAULT_THINKING_MODE_THINKDEEP
def get_model_category(self) -> "ToolModelCategory":
"""ThinkDeep requires extended reasoning capabilities"""
from tools.models import ToolModelCategory
return ToolModelCategory.EXTENDED_REASONING
def get_request_model(self):
return ThinkDeepRequest
async def prepare_prompt(self, request: ThinkDeepRequest) -> str:
"""Prepare the full prompt for extended thinking"""
# Check for prompt.txt in files
prompt_content, updated_files = self.handle_prompt_file(request.files)
# Use prompt.txt content if available, otherwise use the prompt field
current_analysis = prompt_content if prompt_content else request.prompt
# Check user input size at MCP transport boundary (before adding internal content)
size_check = self.check_prompt_size(current_analysis)
if size_check:
from tools.models import ToolOutput
raise ValueError(f"MCP_SIZE_CHECK:{ToolOutput(**size_check).model_dump_json()}")
# Update request files list
if updated_files is not None:
request.files = updated_files
# Build context parts
context_parts = [f"=== CLAUDE'S CURRENT ANALYSIS ===\n{current_analysis}\n=== END ANALYSIS ==="]
if request.problem_context:
context_parts.append(f"\n=== PROBLEM CONTEXT ===\n{request.problem_context}\n=== END CONTEXT ===")
# Add reference files if provided
if request.files:
# Use centralized file processing logic
continuation_id = getattr(request, "continuation_id", None)
file_content = self._prepare_file_content_for_prompt(request.files, continuation_id, "Reference files")
if file_content:
context_parts.append(f"\n=== REFERENCE FILES ===\n{file_content}\n=== END FILES ===")
full_context = "\n".join(context_parts)
# Check token limits
self._validate_token_limit(full_context, "Context")
# Add focus areas instruction if specified
focus_instruction = ""
if request.focus_areas:
areas = ", ".join(request.focus_areas)
focus_instruction = f"\n\nFOCUS AREAS: Please pay special attention to {areas} aspects."
# Add web search instruction if enabled
websearch_instruction = self.get_websearch_instruction(
request.use_websearch,
"""When analyzing complex problems, consider if searches for these would help:
- Current documentation for specific technologies, frameworks, or APIs mentioned
- Known issues, workarounds, or community solutions for similar problems
- Recent updates, deprecations, or best practices that might affect the approach
- Official sources to verify assumptions or clarify technical details""",
)
# Combine system prompt with context
full_prompt = f"""{self.get_system_prompt()}{focus_instruction}{websearch_instruction}
{full_context}
Please provide deep analysis that extends Claude's thinking with:
1. Alternative approaches and solutions
2. Edge cases and potential failure modes
3. Critical evaluation of assumptions
4. Concrete implementation suggestions
5. Risk assessment and mitigation strategies"""
return full_prompt
def format_response(self, response: str, request: ThinkDeepRequest, model_info: Optional[dict] = None) -> str:
"""Format the response with clear attribution and critical thinking prompt"""
# Get the friendly model name
model_name = "your fellow developer"
if model_info and model_info.get("model_response"):
model_name = model_info["model_response"].friendly_name or "your fellow developer"
return f"""{response}
---
## Critical Evaluation Required
Claude, please critically evaluate {model_name}'s analysis by thinking hard about the following:
1. **Technical merit** - Which suggestions are valuable vs. have limitations?
2. **Constraints** - Fit with codebase patterns, performance, security, architecture
3. **Risks** - Hidden complexities, edge cases, potential failure modes
4. **Final recommendation** - Synthesize both perspectives, then ultrathink on your own to explore additional
considerations and arrive at the best technical solution. Feel free to use zen's chat tool for a follow-up discussion
if needed.
Remember: Use {model_name}'s insights to enhance, not replace, your analysis."""