Files
my-pal-mcp-server/tools/analyze.py
Fahad 4becd70a82 Perform prompt size checks only at the MCP boundary
New test to confirm history build-up and system prompt does not affect prompt size checks
Also check for large prompts in focus_on
Fixed .env.example incorrectly did not comment out CUSTOM_API causing the run-server script to think at least one key exists
2025-06-15 10:37:08 +04:00

192 lines
8.0 KiB
Python

"""
Analyze tool - General-purpose code and file analysis
"""
from typing import TYPE_CHECKING, Any, Optional
from pydantic import Field
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from config import TEMPERATURE_ANALYTICAL
from systemprompts import ANALYZE_PROMPT
from .base import BaseTool, ToolRequest
class AnalyzeRequest(ToolRequest):
"""Request model for analyze tool"""
files: list[str] = Field(..., description="Files or directories to analyze (must be absolute paths)")
prompt: str = Field(..., description="What to analyze or look for")
analysis_type: Optional[str] = Field(
None,
description="Type of analysis: architecture|performance|security|quality|general",
)
output_format: Optional[str] = Field("detailed", description="Output format: summary|detailed|actionable")
class AnalyzeTool(BaseTool):
"""General-purpose file and code analysis tool"""
def get_name(self) -> str:
return "analyze"
def get_description(self) -> str:
return (
"ANALYZE FILES & CODE - General-purpose analysis for understanding code. "
"Supports both individual files and entire directories. "
"Use this when you need to analyze files, examine code, or understand specific aspects of a codebase. "
"Perfect for: codebase exploration, dependency analysis, pattern detection. "
"Always uses file paths for clean terminal output. "
"Note: If you're not currently using a top-tier model such as Opus 4 or above, these tools can provide enhanced capabilities."
)
def get_input_schema(self) -> dict[str, Any]:
schema = {
"type": "object",
"properties": {
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files or directories to analyze (must be absolute paths)",
},
"model": self.get_model_field_schema(),
"prompt": {
"type": "string",
"description": "What to analyze or look for",
},
"analysis_type": {
"type": "string",
"enum": [
"architecture",
"performance",
"security",
"quality",
"general",
],
"description": "Type of analysis to perform",
},
"output_format": {
"type": "string",
"enum": ["summary", "detailed", "actionable"],
"default": "detailed",
"description": "How to format the output",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), max (100% of model max)",
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
"default": True,
},
"continuation_id": {
"type": "string",
"description": "Thread continuation ID for multi-turn conversations. Can be used to continue conversations across different tools. Only provide this if continuing a previous conversation thread.",
},
},
"required": ["files", "prompt"] + (["model"] if self.is_effective_auto_mode() else []),
}
return schema
def get_system_prompt(self) -> str:
return ANALYZE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_model_category(self) -> "ToolModelCategory":
"""Analyze requires deep understanding and reasoning"""
from tools.models import ToolModelCategory
return ToolModelCategory.EXTENDED_REASONING
def get_request_model(self):
return AnalyzeRequest
async def prepare_prompt(self, request: AnalyzeRequest) -> str:
"""Prepare the analysis prompt"""
# Check for prompt.txt in files
prompt_content, updated_files = self.handle_prompt_file(request.files)
# If prompt.txt was found, use it as the prompt
if prompt_content:
request.prompt = prompt_content
# Check user input size at MCP transport boundary (before adding internal content)
size_check = self.check_prompt_size(request.prompt)
if size_check:
from tools.models import ToolOutput
raise ValueError(f"MCP_SIZE_CHECK:{ToolOutput(**size_check).model_dump_json()}")
# Update request files list
if updated_files is not None:
request.files = updated_files
# Use centralized file processing logic
continuation_id = getattr(request, "continuation_id", None)
file_content = self._prepare_file_content_for_prompt(request.files, continuation_id, "Files")
# Build analysis instructions
analysis_focus = []
if request.analysis_type:
type_focus = {
"architecture": "Focus on architectural patterns, structure, and design decisions",
"performance": "Focus on performance characteristics and optimization opportunities",
"security": "Focus on security implications and potential vulnerabilities",
"quality": "Focus on code quality, maintainability, and best practices",
"general": "Provide a comprehensive general analysis",
}
analysis_focus.append(type_focus.get(request.analysis_type, ""))
if request.output_format == "summary":
analysis_focus.append("Provide a concise summary of key findings")
elif request.output_format == "actionable":
analysis_focus.append("Focus on actionable insights and specific recommendations")
focus_instruction = "\n".join(analysis_focus) if analysis_focus else ""
# Add web search instruction if enabled
websearch_instruction = self.get_websearch_instruction(
request.use_websearch,
"""When analyzing code, consider if searches for these would help:
- Documentation for technologies or frameworks found in the code
- Best practices and design patterns relevant to the analysis
- API references and usage examples
- Known issues or solutions for patterns you identify""",
)
# Combine everything
full_prompt = f"""{self.get_system_prompt()}
{focus_instruction}{websearch_instruction}
=== USER QUESTION ===
{request.prompt}
=== END QUESTION ===
=== FILES TO ANALYZE ===
{file_content}
=== END FILES ===
Please analyze these files to answer the user's question."""
return full_prompt
def format_response(self, response: str, request: AnalyzeRequest, model_info: Optional[dict] = None) -> str:
"""Format the analysis response"""
return f"{response}\n\n---\n\n**Next Steps:** Use this analysis to actively continue your task. Investigate deeper into any findings, implement solutions based on these insights, and carry out the necessary work. Only pause to ask the user if you need their explicit approval for major changes or if critical decisions require their input."