- Fix lint errors: trailing whitespace and deprecated typing imports - Update test mock for o3-pro response format (output.content[] → output_text) - Implement robust test isolation with monkeypatch fixture - Clear provider registry cache to prevent test interference - Ensure o3-pro tests pass in both individual and full suite execution 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
292 lines
13 KiB
Python
292 lines
13 KiB
Python
"""Tests for OpenAI provider implementation."""
|
|
|
|
import os
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
from providers.base import ProviderType
|
|
from providers.openai_provider import OpenAIModelProvider
|
|
|
|
|
|
class TestOpenAIProvider:
|
|
"""Test OpenAI provider functionality."""
|
|
|
|
def setup_method(self):
|
|
"""Set up clean state before each test."""
|
|
# Clear restriction service cache before each test
|
|
import utils.model_restrictions
|
|
|
|
utils.model_restrictions._restriction_service = None
|
|
|
|
def teardown_method(self):
|
|
"""Clean up after each test to avoid singleton issues."""
|
|
# Clear restriction service cache after each test
|
|
import utils.model_restrictions
|
|
|
|
utils.model_restrictions._restriction_service = None
|
|
|
|
@patch.dict(os.environ, {"OPENAI_API_KEY": "test-key"})
|
|
def test_initialization(self):
|
|
"""Test provider initialization."""
|
|
provider = OpenAIModelProvider("test-key")
|
|
assert provider.api_key == "test-key"
|
|
assert provider.get_provider_type() == ProviderType.OPENAI
|
|
assert provider.base_url == "https://api.openai.com/v1"
|
|
|
|
def test_initialization_with_custom_url(self):
|
|
"""Test provider initialization with custom base URL."""
|
|
provider = OpenAIModelProvider("test-key", base_url="https://custom.openai.com/v1")
|
|
assert provider.api_key == "test-key"
|
|
assert provider.base_url == "https://custom.openai.com/v1"
|
|
|
|
def test_model_validation(self):
|
|
"""Test model name validation."""
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Test valid models
|
|
assert provider.validate_model_name("o3") is True
|
|
assert provider.validate_model_name("o3-mini") is True
|
|
assert provider.validate_model_name("o3-pro") is True
|
|
assert provider.validate_model_name("o4-mini") is True
|
|
assert provider.validate_model_name("o4-mini") is True
|
|
|
|
# Test valid aliases
|
|
assert provider.validate_model_name("mini") is True
|
|
assert provider.validate_model_name("o3mini") is True
|
|
assert provider.validate_model_name("o4mini") is True
|
|
assert provider.validate_model_name("o4mini") is True
|
|
|
|
# Test invalid model
|
|
assert provider.validate_model_name("invalid-model") is False
|
|
assert provider.validate_model_name("gpt-4") is False
|
|
assert provider.validate_model_name("gemini-pro") is False
|
|
|
|
def test_resolve_model_name(self):
|
|
"""Test model name resolution."""
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Test shorthand resolution
|
|
assert provider._resolve_model_name("mini") == "o4-mini"
|
|
assert provider._resolve_model_name("o3mini") == "o3-mini"
|
|
assert provider._resolve_model_name("o4mini") == "o4-mini"
|
|
assert provider._resolve_model_name("o4mini") == "o4-mini"
|
|
|
|
# Test full name passthrough
|
|
assert provider._resolve_model_name("o3") == "o3"
|
|
assert provider._resolve_model_name("o3-mini") == "o3-mini"
|
|
assert provider._resolve_model_name("o3-pro") == "o3-pro-2025-06-10"
|
|
assert provider._resolve_model_name("o4-mini") == "o4-mini"
|
|
assert provider._resolve_model_name("o4-mini") == "o4-mini"
|
|
|
|
def test_get_capabilities_o3(self):
|
|
"""Test getting model capabilities for O3."""
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
capabilities = provider.get_capabilities("o3")
|
|
assert capabilities.model_name == "o3" # Should NOT be resolved in capabilities
|
|
assert capabilities.friendly_name == "OpenAI (O3)"
|
|
assert capabilities.context_window == 200_000
|
|
assert capabilities.provider == ProviderType.OPENAI
|
|
assert not capabilities.supports_extended_thinking
|
|
assert capabilities.supports_system_prompts is True
|
|
assert capabilities.supports_streaming is True
|
|
assert capabilities.supports_function_calling is True
|
|
|
|
# Test temperature constraint (O3 has fixed temperature)
|
|
assert capabilities.temperature_constraint.value == 1.0
|
|
|
|
def test_get_capabilities_with_alias(self):
|
|
"""Test getting model capabilities with alias resolves correctly."""
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
capabilities = provider.get_capabilities("mini")
|
|
assert capabilities.model_name == "o4-mini" # Capabilities should show resolved model name
|
|
assert capabilities.friendly_name == "OpenAI (O4-mini)"
|
|
assert capabilities.context_window == 200_000
|
|
assert capabilities.provider == ProviderType.OPENAI
|
|
|
|
@patch("providers.openai_compatible.OpenAI")
|
|
def test_generate_content_resolves_alias_before_api_call(self, mock_openai_class):
|
|
"""Test that generate_content resolves aliases before making API calls.
|
|
|
|
This is the CRITICAL test that was missing - verifying that aliases
|
|
like 'mini' get resolved to 'o4-mini' before being sent to OpenAI API.
|
|
"""
|
|
# Set up mock OpenAI client
|
|
mock_client = MagicMock()
|
|
mock_openai_class.return_value = mock_client
|
|
|
|
# Mock the completion response
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [MagicMock()]
|
|
mock_response.choices[0].message.content = "Test response"
|
|
mock_response.choices[0].finish_reason = "stop"
|
|
mock_response.model = "gpt-4.1-2025-04-14" # API returns the resolved model name
|
|
mock_response.id = "test-id"
|
|
mock_response.created = 1234567890
|
|
mock_response.usage = MagicMock()
|
|
mock_response.usage.prompt_tokens = 10
|
|
mock_response.usage.completion_tokens = 5
|
|
mock_response.usage.total_tokens = 15
|
|
|
|
mock_client.chat.completions.create.return_value = mock_response
|
|
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Call generate_content with alias 'gpt4.1' (resolves to gpt-4.1-2025-04-14, supports temperature)
|
|
result = provider.generate_content(
|
|
prompt="Test prompt",
|
|
model_name="gpt4.1",
|
|
temperature=1.0, # This should be resolved to "gpt-4.1-2025-04-14"
|
|
)
|
|
|
|
# Verify the API was called with the RESOLVED model name
|
|
mock_client.chat.completions.create.assert_called_once()
|
|
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
|
|
|
# CRITICAL ASSERTION: The API should receive "gpt-4.1-2025-04-14", not "gpt4.1"
|
|
assert (
|
|
call_kwargs["model"] == "gpt-4.1-2025-04-14"
|
|
), f"Expected 'gpt-4.1-2025-04-14' but API received '{call_kwargs['model']}'"
|
|
|
|
# Verify other parameters (gpt-4.1 supports temperature unlike O3/O4 models)
|
|
assert call_kwargs["temperature"] == 1.0
|
|
assert len(call_kwargs["messages"]) == 1
|
|
assert call_kwargs["messages"][0]["role"] == "user"
|
|
assert call_kwargs["messages"][0]["content"] == "Test prompt"
|
|
|
|
# Verify response
|
|
assert result.content == "Test response"
|
|
assert result.model_name == "gpt-4.1-2025-04-14" # Should be the resolved name
|
|
|
|
@patch("providers.openai_compatible.OpenAI")
|
|
def test_generate_content_other_aliases(self, mock_openai_class):
|
|
"""Test other alias resolutions in generate_content."""
|
|
# Set up mock
|
|
mock_client = MagicMock()
|
|
mock_openai_class.return_value = mock_client
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [MagicMock()]
|
|
mock_response.choices[0].message.content = "Test response"
|
|
mock_response.choices[0].finish_reason = "stop"
|
|
mock_response.usage = MagicMock()
|
|
mock_response.usage.prompt_tokens = 10
|
|
mock_response.usage.completion_tokens = 5
|
|
mock_response.usage.total_tokens = 15
|
|
mock_client.chat.completions.create.return_value = mock_response
|
|
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Test o3mini -> o3-mini
|
|
mock_response.model = "o3-mini"
|
|
provider.generate_content(prompt="Test", model_name="o3mini", temperature=1.0)
|
|
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
|
assert call_kwargs["model"] == "o3-mini"
|
|
|
|
# Test o4mini -> o4-mini
|
|
mock_response.model = "o4-mini"
|
|
provider.generate_content(prompt="Test", model_name="o4mini", temperature=1.0)
|
|
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
|
assert call_kwargs["model"] == "o4-mini"
|
|
|
|
@patch("providers.openai_compatible.OpenAI")
|
|
def test_generate_content_no_alias_passthrough(self, mock_openai_class):
|
|
"""Test that full model names pass through unchanged."""
|
|
# Set up mock
|
|
mock_client = MagicMock()
|
|
mock_openai_class.return_value = mock_client
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [MagicMock()]
|
|
mock_response.choices[0].message.content = "Test response"
|
|
mock_response.choices[0].finish_reason = "stop"
|
|
mock_response.model = "o3-mini"
|
|
mock_response.usage = MagicMock()
|
|
mock_response.usage.prompt_tokens = 10
|
|
mock_response.usage.completion_tokens = 5
|
|
mock_response.usage.total_tokens = 15
|
|
mock_client.chat.completions.create.return_value = mock_response
|
|
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Test full model name passes through unchanged (use o3-mini since o3-pro has special handling)
|
|
provider.generate_content(prompt="Test", model_name="o3-mini", temperature=1.0)
|
|
call_kwargs = mock_client.chat.completions.create.call_args[1]
|
|
assert call_kwargs["model"] == "o3-mini" # Should be unchanged
|
|
|
|
def test_supports_thinking_mode(self):
|
|
"""Test thinking mode support (currently False for all OpenAI models)."""
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# All OpenAI models currently don't support thinking mode
|
|
assert provider.supports_thinking_mode("o3") is False
|
|
assert provider.supports_thinking_mode("o3-mini") is False
|
|
assert provider.supports_thinking_mode("o4-mini") is False
|
|
assert provider.supports_thinking_mode("mini") is False # Test with alias too
|
|
|
|
@patch("providers.openai_compatible.OpenAI")
|
|
def test_o3_pro_routes_to_responses_endpoint(self, mock_openai_class):
|
|
"""Test that o3-pro model routes to the /v1/responses endpoint (mock test)."""
|
|
# Set up mock for OpenAI client responses endpoint
|
|
mock_client = MagicMock()
|
|
mock_openai_class.return_value = mock_client
|
|
|
|
mock_response = MagicMock()
|
|
# New o3-pro format: direct output_text field
|
|
mock_response.output_text = "4"
|
|
mock_response.model = "o3-pro-2025-06-10"
|
|
mock_response.id = "test-id"
|
|
mock_response.created_at = 1234567890
|
|
mock_response.usage = MagicMock()
|
|
mock_response.usage.prompt_tokens = 10
|
|
mock_response.usage.completion_tokens = 5
|
|
mock_response.usage.total_tokens = 15
|
|
|
|
mock_client.responses.create.return_value = mock_response
|
|
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Generate content with o3-pro
|
|
result = provider.generate_content(prompt="What is 2 + 2?", model_name="o3-pro", temperature=1.0)
|
|
|
|
# Verify responses.create was called
|
|
mock_client.responses.create.assert_called_once()
|
|
call_args = mock_client.responses.create.call_args[1]
|
|
assert call_args["model"] == "o3-pro-2025-06-10"
|
|
assert call_args["input"][0]["role"] == "user"
|
|
assert "What is 2 + 2?" in call_args["input"][0]["content"][0]["text"]
|
|
|
|
# Verify the response
|
|
assert result.content == "4"
|
|
assert result.model_name == "o3-pro-2025-06-10"
|
|
assert result.metadata["endpoint"] == "responses"
|
|
|
|
@patch("providers.openai_compatible.OpenAI")
|
|
def test_non_o3_pro_uses_chat_completions(self, mock_openai_class):
|
|
"""Test that non-o3-pro models use the standard chat completions endpoint."""
|
|
# Set up mock
|
|
mock_client = MagicMock()
|
|
mock_openai_class.return_value = mock_client
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [MagicMock()]
|
|
mock_response.choices[0].message.content = "Test response"
|
|
mock_response.choices[0].finish_reason = "stop"
|
|
mock_response.model = "o3-mini"
|
|
mock_response.id = "test-id"
|
|
mock_response.created = 1234567890
|
|
mock_response.usage = MagicMock()
|
|
mock_response.usage.prompt_tokens = 10
|
|
mock_response.usage.completion_tokens = 5
|
|
mock_response.usage.total_tokens = 15
|
|
mock_client.chat.completions.create.return_value = mock_response
|
|
|
|
provider = OpenAIModelProvider("test-key")
|
|
|
|
# Generate content with o3-mini (not o3-pro)
|
|
result = provider.generate_content(prompt="Test prompt", model_name="o3-mini", temperature=1.0)
|
|
|
|
# Verify chat.completions.create was called
|
|
mock_client.chat.completions.create.assert_called_once()
|
|
|
|
# Verify the response
|
|
assert result.content == "Test response"
|
|
assert result.model_name == "o3-mini"
|