Files
my-pal-mcp-server/tools/debug_issue.py
Fahad 27add4d05d feat: Major refactoring and improvements v2.11.0
## 🚀 Major Improvements

### Docker Environment Simplification
- **BREAKING**: Simplified Docker configuration by auto-detecting sandbox from WORKSPACE_ROOT
- Removed redundant MCP_PROJECT_ROOT requirement for Docker setups
- Updated all Docker config examples and setup scripts
- Added security validation for dangerous WORKSPACE_ROOT paths

### Security Enhancements
- **CRITICAL**: Fixed insecure PROJECT_ROOT fallback to use current directory instead of home
- Enhanced path validation with proper Docker environment detection
- Removed information disclosure in error messages
- Strengthened symlink and path traversal protection

### File Handling Optimization
- **PERFORMANCE**: Optimized read_files() to return content only (removed summary)
- Unified file reading across all tools using standardized file_utils routines
- Fixed review_changes tool to use consistent file loading patterns
- Improved token management and reduced unnecessary processing

### Tool Improvements
- **UX**: Enhanced ReviewCodeTool to require user context for targeted reviews
- Removed deprecated _get_secure_container_path function and _sanitize_filename
- Standardized file access patterns across analyze, review_changes, and other tools
- Added contextual prompting to align reviews with user expectations

### Code Quality & Testing
- Updated all tests for new function signatures and requirements
- Added comprehensive Docker path integration tests
- Achieved 100% test coverage (95 tests passing)
- Full compliance with ruff, black, and isort linting standards

### Configuration & Deployment
- Added pyproject.toml for modern Python packaging
- Streamlined Docker setup removing redundant environment variables
- Updated setup scripts across all platforms (Windows, macOS, Linux)
- Improved error handling and validation throughout

## 🔧 Technical Changes

- **Removed**: `_get_secure_container_path()`, `_sanitize_filename()`, unused SANDBOX_MODE
- **Enhanced**: Path translation, security validation, token management
- **Standardized**: File reading patterns, error handling, Docker detection
- **Updated**: All tool prompts for better context alignment

## 🛡️ Security Notes

This release significantly improves the security posture by:
- Eliminating broad filesystem access defaults
- Adding validation for Docker environment variables
- Removing information disclosure in error paths
- Strengthening path traversal and symlink protections

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-10 09:50:05 +04:00

170 lines
6.9 KiB
Python

"""
Debug Issue tool - Root cause analysis and debugging assistance
"""
from typing import Any, Optional
from mcp.types import TextContent
from pydantic import Field
from config import TEMPERATURE_ANALYTICAL
from prompts import DEBUG_ISSUE_PROMPT
from utils import read_files
from .base import BaseTool, ToolRequest
from .models import ToolOutput
class DebugIssueRequest(ToolRequest):
"""Request model for debug_issue tool"""
error_description: str = Field(..., description="Error message, symptoms, or issue description")
error_context: Optional[str] = Field(None, description="Stack trace, logs, or additional error context")
files: Optional[list[str]] = Field(
None,
description="Files or directories that might be related to the issue (must be absolute paths)",
)
runtime_info: Optional[str] = Field(None, description="Environment, versions, or runtime information")
previous_attempts: Optional[str] = Field(None, description="What has been tried already")
class DebugIssueTool(BaseTool):
"""Advanced debugging and root cause analysis tool"""
def get_name(self) -> str:
return "debug_issue"
def get_description(self) -> str:
return (
"DEBUG & ROOT CAUSE ANALYSIS - Expert debugging for complex issues. "
"Use this when you need help tracking down bugs or understanding errors. "
"Triggers: 'debug this', 'why is this failing', 'root cause', 'trace error'. "
"I'll analyze the issue, find root causes, and provide step-by-step solutions. "
"Include error messages, stack traces, and relevant code for best results. "
"Choose thinking_mode based on issue complexity: 'low' for simple errors, "
"'medium' for standard debugging (default), 'high' for complex system issues, "
"'max' for extremely challenging bugs requiring deepest analysis."
)
def get_input_schema(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"error_description": {
"type": "string",
"description": "Error message, symptoms, or issue description",
},
"error_context": {
"type": "string",
"description": "Stack trace, logs, or additional error context",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files or directories that might be related to the issue (must be absolute paths)",
},
"runtime_info": {
"type": "string",
"description": "Environment, versions, or runtime information",
},
"previous_attempts": {
"type": "string",
"description": "What has been tried already",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2 for accuracy)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)",
},
},
"required": ["error_description"],
}
def get_system_prompt(self) -> str:
return DEBUG_ISSUE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_request_model(self):
return DebugIssueRequest
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
"""Override execute to check error_description and error_context size before processing"""
# First validate request
request_model = self.get_request_model()
request = request_model(**arguments)
# Check error_description size
size_check = self.check_prompt_size(request.error_description)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Check error_context size if provided
if request.error_context:
size_check = self.check_prompt_size(request.error_context)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Continue with normal execution
return await super().execute(arguments)
async def prepare_prompt(self, request: DebugIssueRequest) -> str:
"""Prepare the debugging prompt"""
# Check for prompt.txt in files
prompt_content, updated_files = self.handle_prompt_file(request.files)
# If prompt.txt was found, use it as error_description or error_context
# Priority: if error_description is empty, use it there, otherwise use as error_context
if prompt_content:
if not request.error_description or request.error_description == "":
request.error_description = prompt_content
else:
request.error_context = prompt_content
# Update request files list
if updated_files is not None:
request.files = updated_files
# Build context sections
context_parts = [f"=== ISSUE DESCRIPTION ===\n{request.error_description}\n=== END DESCRIPTION ==="]
if request.error_context:
context_parts.append(f"\n=== ERROR CONTEXT/STACK TRACE ===\n{request.error_context}\n=== END CONTEXT ===")
if request.runtime_info:
context_parts.append(f"\n=== RUNTIME INFORMATION ===\n{request.runtime_info}\n=== END RUNTIME ===")
if request.previous_attempts:
context_parts.append(f"\n=== PREVIOUS ATTEMPTS ===\n{request.previous_attempts}\n=== END ATTEMPTS ===")
# Add relevant files if provided
if request.files:
file_content = read_files(request.files)
context_parts.append(f"\n=== RELEVANT CODE ===\n{file_content}\n=== END CODE ===")
full_context = "\n".join(context_parts)
# Check token limits
self._validate_token_limit(full_context, "Context")
# Combine everything
full_prompt = f"""{self.get_system_prompt()}
{full_context}
Please debug this issue following the structured format in the system prompt.
Focus on finding the root cause and providing actionable solutions."""
return full_prompt
def format_response(self, response: str, request: DebugIssueRequest) -> str:
"""Format the debugging response"""
return f"Debug Analysis\n{'=' * 50}\n\n{response}\n\n---\n\n**Next Steps:** Evaluate Gemini's recommendations, synthesize the best fix considering potential regressions, test thoroughly, and ensure the solution doesn't introduce new issues."