Files
my-pal-mcp-server/tools/debug.py

217 lines
9.4 KiB
Python

"""
Debug Issue tool - Root cause analysis and debugging assistance
"""
from typing import TYPE_CHECKING, Any, Optional
from mcp.types import TextContent
from pydantic import Field
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from config import TEMPERATURE_ANALYTICAL
from systemprompts import DEBUG_ISSUE_PROMPT
from .base import BaseTool, ToolRequest
from .models import ToolOutput
class DebugIssueRequest(ToolRequest):
"""Request model for debug tool"""
prompt: str = Field(..., description="Error message, symptoms, or issue description")
error_context: Optional[str] = Field(None, description="Stack trace, logs, or additional error context")
files: Optional[list[str]] = Field(
None,
description="Files or directories that might be related to the issue (must be absolute paths)",
)
runtime_info: Optional[str] = Field(None, description="Environment, versions, or runtime information")
previous_attempts: Optional[str] = Field(None, description="What has been tried already")
class DebugIssueTool(BaseTool):
"""Advanced debugging and root cause analysis tool"""
def get_name(self) -> str:
return "debug"
def get_description(self) -> str:
return (
"DEBUG & ROOT CAUSE ANALYSIS - Expert debugging for complex issues with 1M token capacity. "
"Use this when you need to debug code, find out why something is failing, identify root causes, "
"trace errors, or diagnose issues. "
"IMPORTANT: Share diagnostic files liberally! The model can handle up to 1M tokens, so include: "
"large log files, full stack traces, memory dumps, diagnostic outputs, multiple related files, "
"entire modules, test results, configuration files - anything that might help debug the issue. "
"Claude should proactively use this tool whenever debugging is needed and share comprehensive "
"file paths rather than snippets. Include error messages, stack traces, logs, and ALL relevant "
"code files as absolute paths. The more context, the better the debugging analysis. "
"Choose thinking_mode based on issue complexity: 'low' for simple errors, "
"'medium' for standard debugging (default), 'high' for complex system issues, "
"'max' for extremely challenging bugs requiring deepest analysis."
)
def get_input_schema(self) -> dict[str, Any]:
schema = {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "Error message, symptoms, or issue description",
},
"model": self.get_model_field_schema(),
"error_context": {
"type": "string",
"description": "Stack trace, logs, or additional error context",
},
"files": {
"type": "array",
"items": {"type": "string"},
"description": "Files or directories that might be related to the issue (must be absolute paths)",
},
"runtime_info": {
"type": "string",
"description": "Environment, versions, or runtime information",
},
"previous_attempts": {
"type": "string",
"description": "What has been tried already",
},
"temperature": {
"type": "number",
"description": "Temperature (0-1, default 0.2 for accuracy)",
"minimum": 0,
"maximum": 1,
},
"thinking_mode": {
"type": "string",
"enum": ["minimal", "low", "medium", "high", "max"],
"description": "Thinking depth: minimal (0.5% of model max), low (8%), medium (33%), high (67%), max (100% of model max)",
},
"use_websearch": {
"type": "boolean",
"description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.",
"default": True,
},
"continuation_id": {
"type": "string",
"description": "Thread continuation ID for multi-turn conversations. Can be used to continue conversations across different tools. Only provide this if continuing a previous conversation thread.",
},
},
"required": ["prompt"] + (["model"] if self.is_effective_auto_mode() else []),
}
return schema
def get_system_prompt(self) -> str:
return DEBUG_ISSUE_PROMPT
def get_default_temperature(self) -> float:
return TEMPERATURE_ANALYTICAL
def get_model_category(self) -> "ToolModelCategory":
"""Debug requires deep analysis and reasoning"""
from tools.models import ToolModelCategory
return ToolModelCategory.EXTENDED_REASONING
def get_request_model(self):
return DebugIssueRequest
async def execute(self, arguments: dict[str, Any]) -> list[TextContent]:
"""Override execute to check error_description and error_context size before processing"""
# First validate request
request_model = self.get_request_model()
request = request_model(**arguments)
# Check prompt size
size_check = self.check_prompt_size(request.prompt)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Check error_context size if provided
if request.error_context:
size_check = self.check_prompt_size(request.error_context)
if size_check:
return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())]
# Continue with normal execution
return await super().execute(arguments)
async def prepare_prompt(self, request: DebugIssueRequest) -> str:
"""Prepare the debugging prompt"""
# Check for prompt.txt in files
prompt_content, updated_files = self.handle_prompt_file(request.files)
# If prompt.txt was found, use it as prompt or error_context
if prompt_content:
if not request.prompt or request.prompt == "":
request.prompt = prompt_content
else:
request.error_context = prompt_content
# Update request files list
if updated_files is not None:
request.files = updated_files
# Build context sections
context_parts = [f"=== ISSUE DESCRIPTION ===\n{request.prompt}\n=== END DESCRIPTION ==="]
if request.error_context:
context_parts.append(f"\n=== ERROR CONTEXT/STACK TRACE ===\n{request.error_context}\n=== END CONTEXT ===")
if request.runtime_info:
context_parts.append(f"\n=== RUNTIME INFORMATION ===\n{request.runtime_info}\n=== END RUNTIME ===")
if request.previous_attempts:
context_parts.append(f"\n=== PREVIOUS ATTEMPTS ===\n{request.previous_attempts}\n=== END ATTEMPTS ===")
# Add relevant files if provided
if request.files:
# Use centralized file processing logic
continuation_id = getattr(request, "continuation_id", None)
file_content = self._prepare_file_content_for_prompt(request.files, continuation_id, "Code")
if file_content:
context_parts.append(f"\n=== RELEVANT CODE ===\n{file_content}\n=== END CODE ===")
full_context = "\n".join(context_parts)
# Check token limits
self._validate_token_limit(full_context, "Context")
# Add web search instruction if enabled
websearch_instruction = self.get_websearch_instruction(
request.use_websearch,
"""When debugging issues, consider if searches for these would help:
- The exact error message to find known solutions
- Framework-specific error codes and their meanings
- Similar issues in forums, GitHub issues, or Stack Overflow
- Workarounds and patches for known bugs
- Version-specific issues and compatibility problems""",
)
# Combine everything
full_prompt = f"""{self.get_system_prompt()}{websearch_instruction}
{full_context}
Please debug this issue following the structured format in the system prompt.
Focus on finding the root cause and providing actionable solutions."""
return full_prompt
def format_response(self, response: str, request: DebugIssueRequest, model_info: Optional[dict] = None) -> str:
"""Format the debugging response"""
# Get the friendly model name
model_name = "the model"
if model_info and model_info.get("model_response"):
model_name = model_info["model_response"].friendly_name or "the model"
return f"""{response}
---
**Next Steps:** Evaluate {model_name}'s recommendations, synthesize the best fix considering potential regressions, and if the root cause has been clearly identified, proceed with implementing the potential fixes."""