Files
my-pal-mcp-server/providers/base.py
2025-10-02 08:09:44 +04:00

374 lines
14 KiB
Python

"""Base interfaces and common behaviour for model providers."""
import base64
import binascii
import logging
import os
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, Optional
if TYPE_CHECKING:
from tools.models import ToolModelCategory
from utils.file_types import IMAGES, get_image_mime_type
from .shared import ModelCapabilities, ModelResponse, ProviderType
logger = logging.getLogger(__name__)
class ModelProvider(ABC):
"""Defines the contract implemented by every model provider backend.
Subclasses adapt third-party SDKs into the MCP server by exposing
capability metadata, request execution, and token counting through a
consistent interface. Shared helper methods (temperature validation,
alias resolution, image handling, etc.) live here so individual providers
only need to focus on provider-specific details.
"""
# All concrete providers must define their supported models
SUPPORTED_MODELS: dict[str, Any] = {}
# Default maximum image size in MB
DEFAULT_MAX_IMAGE_SIZE_MB = 20.0
def __init__(self, api_key: str, **kwargs):
"""Initialize the provider with API key and optional configuration."""
self.api_key = api_key
self.config = kwargs
@abstractmethod
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific model."""
pass
@abstractmethod
def generate_content(
self,
prompt: str,
model_name: str,
system_prompt: Optional[str] = None,
temperature: float = 0.3,
max_output_tokens: Optional[int] = None,
**kwargs,
) -> ModelResponse:
"""Generate content using the model.
Args:
prompt: User prompt to send to the model
model_name: Name of the model to use
system_prompt: Optional system prompt for model behavior
temperature: Sampling temperature (0-2)
max_output_tokens: Maximum tokens to generate
**kwargs: Provider-specific parameters
Returns:
ModelResponse with generated content and metadata
"""
pass
@abstractmethod
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text using the specified model's tokenizer."""
pass
@abstractmethod
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
pass
@abstractmethod
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported by this provider."""
pass
def get_effective_temperature(self, model_name: str, requested_temperature: float) -> Optional[float]:
"""Get the effective temperature to use for a model given a requested temperature.
This method handles:
- Models that don't support temperature (returns None)
- Fixed temperature models (returns the fixed value)
- Clamping to min/max range for models with constraints
Args:
model_name: The model to get temperature for
requested_temperature: The temperature requested by the user/tool
Returns:
The effective temperature to use, or None if temperature shouldn't be passed
"""
try:
capabilities = self.get_capabilities(model_name)
# Check if model supports temperature at all
if not capabilities.supports_temperature:
return None
# Use temperature constraint to get corrected value
corrected_temp = capabilities.temperature_constraint.get_corrected_value(requested_temperature)
if corrected_temp != requested_temperature:
logger.debug(
f"Adjusting temperature from {requested_temperature} to {corrected_temp} for model {model_name}"
)
return corrected_temp
except Exception as e:
logger.debug(f"Could not determine effective temperature for {model_name}: {e}")
# If we can't get capabilities, return the requested temperature
return requested_temperature
def validate_parameters(self, model_name: str, temperature: float, **kwargs) -> None:
"""Validate model parameters against capabilities.
Raises:
ValueError: If parameters are invalid
"""
capabilities = self.get_capabilities(model_name)
# Validate temperature using constraint
if not capabilities.temperature_constraint.validate(temperature):
constraint_desc = capabilities.temperature_constraint.get_description()
raise ValueError(f"Temperature {temperature} is invalid for model {model_name}. {constraint_desc}")
@abstractmethod
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
pass
def get_model_configurations(self) -> dict[str, ModelCapabilities]:
"""Get model configurations for this provider.
This is a hook method that subclasses can override to provide
their model configurations from different sources.
Returns:
Dictionary mapping model names to their ModelCapabilities objects
"""
# Return SUPPORTED_MODELS if it exists (must contain ModelCapabilities objects)
if hasattr(self, "SUPPORTED_MODELS"):
return {k: v for k, v in self.SUPPORTED_MODELS.items() if isinstance(v, ModelCapabilities)}
return {}
def get_all_model_aliases(self) -> dict[str, list[str]]:
"""Get all model aliases for this provider.
This is a hook method that subclasses can override to provide
aliases from different sources.
Returns:
Dictionary mapping model names to their list of aliases
"""
# Default implementation extracts from ModelCapabilities objects
aliases = {}
for model_name, capabilities in self.get_model_configurations().items():
if capabilities.aliases:
aliases[model_name] = capabilities.aliases
return aliases
def _resolve_model_name(self, model_name: str) -> str:
"""Resolve model shorthand to full name.
This implementation uses the hook methods to support different
model configuration sources.
Args:
model_name: Model name that may be an alias
Returns:
Resolved model name
"""
# Get model configurations from the hook method
model_configs = self.get_model_configurations()
# First check if it's already a base model name (case-sensitive exact match)
if model_name in model_configs:
return model_name
# Check case-insensitively for both base models and aliases
model_name_lower = model_name.lower()
# Check base model names case-insensitively
for base_model in model_configs:
if base_model.lower() == model_name_lower:
return base_model
# Check aliases from the hook method
all_aliases = self.get_all_model_aliases()
for base_model, aliases in all_aliases.items():
if any(alias.lower() == model_name_lower for alias in aliases):
return base_model
# If not found, return as-is
return model_name
def list_models(self, respect_restrictions: bool = True) -> list[str]:
"""Return a list of model names supported by this provider.
This implementation uses the get_model_configurations() hook
to support different model configuration sources.
Args:
respect_restrictions: Whether to apply provider-specific restriction logic.
Returns:
List of model names available from this provider
"""
from utils.model_restrictions import get_restriction_service
restriction_service = get_restriction_service() if respect_restrictions else None
models = []
# Get model configurations from the hook method
model_configs = self.get_model_configurations()
for model_name in model_configs:
# Check restrictions if enabled
if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name):
continue
# Add the base model
models.append(model_name)
# Get aliases from the hook method
all_aliases = self.get_all_model_aliases()
for model_name, aliases in all_aliases.items():
# Only add aliases for models that passed restriction check
if model_name in models:
models.extend(aliases)
return models
def list_all_known_models(self) -> list[str]:
"""Return all model names known by this provider, including alias targets.
This is used for validation purposes to ensure restriction policies
can validate against both aliases and their target model names.
Returns:
List of all model names and alias targets known by this provider
"""
all_models = set()
# Get model configurations from the hook method
model_configs = self.get_model_configurations()
# Add all base model names
for model_name in model_configs:
all_models.add(model_name.lower())
# Get aliases from the hook method and add them
all_aliases = self.get_all_model_aliases()
for _model_name, aliases in all_aliases.items():
for alias in aliases:
all_models.add(alias.lower())
return list(all_models)
def validate_image(self, image_path: str, max_size_mb: float = None) -> tuple[bytes, str]:
"""Provider-independent image validation.
Args:
image_path: Path to image file or data URL
max_size_mb: Maximum allowed image size in MB (defaults to DEFAULT_MAX_IMAGE_SIZE_MB)
Returns:
Tuple of (image_bytes, mime_type)
Raises:
ValueError: If image is invalid
Examples:
# Validate a file path
image_bytes, mime_type = provider.validate_image("/path/to/image.png")
# Validate a data URL
image_bytes, mime_type = provider.validate_image("data:image/png;base64,...")
# Validate with custom size limit
image_bytes, mime_type = provider.validate_image("/path/to/image.jpg", max_size_mb=10.0)
"""
# Use default if not specified
if max_size_mb is None:
max_size_mb = self.DEFAULT_MAX_IMAGE_SIZE_MB
if image_path.startswith("data:"):
# Parse data URL: ...
try:
header, data = image_path.split(",", 1)
mime_type = header.split(";")[0].split(":")[1]
except (ValueError, IndexError) as e:
raise ValueError(f"Invalid data URL format: {e}")
# Validate MIME type using IMAGES constant
valid_mime_types = [get_image_mime_type(ext) for ext in IMAGES]
if mime_type not in valid_mime_types:
raise ValueError(f"Unsupported image type: {mime_type}. Supported types: {', '.join(valid_mime_types)}")
# Decode base64 data
try:
image_bytes = base64.b64decode(data)
except binascii.Error as e:
raise ValueError(f"Invalid base64 data: {e}")
else:
# Handle file path
# Read file first to check if it exists
try:
with open(image_path, "rb") as f:
image_bytes = f.read()
except FileNotFoundError:
raise ValueError(f"Image file not found: {image_path}")
except Exception as e:
raise ValueError(f"Failed to read image file: {e}")
# Validate extension
ext = os.path.splitext(image_path)[1].lower()
if ext not in IMAGES:
raise ValueError(f"Unsupported image format: {ext}. Supported formats: {', '.join(sorted(IMAGES))}")
# Get MIME type
mime_type = get_image_mime_type(ext)
# Validate size
size_mb = len(image_bytes) / (1024 * 1024)
if size_mb > max_size_mb:
raise ValueError(f"Image too large: {size_mb:.1f}MB (max: {max_size_mb}MB)")
return image_bytes, mime_type
def close(self):
"""Clean up any resources held by the provider.
Default implementation does nothing.
Subclasses should override if they hold resources that need cleanup.
"""
# Base implementation: no resources to clean up
return
def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]:
"""Get the preferred model from this provider for a given category.
Args:
category: The tool category requiring a model
allowed_models: Pre-filtered list of model names that are allowed by restrictions
Returns:
Model name if this provider has a preference, None otherwise
"""
# Default implementation - providers can override with specific logic
return None
def get_model_registry(self) -> Optional[dict[str, Any]]:
"""Get the model registry for providers that maintain one.
This is a hook method for providers like CustomProvider that maintain
a dynamic model registry.
Returns:
Model registry dict or None if not applicable
"""
# Default implementation - most providers don't have a registry
return None