refactor: model listing cleanup, moved logic to model_capabilities.py docs: added AGENTS.md for onboarding Codex
123 lines
4.2 KiB
Python
123 lines
4.2 KiB
Python
"""Dataclass describing the feature set of a model exposed by a provider."""
|
|
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
from .provider_type import ProviderType
|
|
from .temperature import RangeTemperatureConstraint, TemperatureConstraint
|
|
|
|
__all__ = ["ModelCapabilities"]
|
|
|
|
|
|
@dataclass
|
|
class ModelCapabilities:
|
|
"""Static description of what a model can do within a provider.
|
|
|
|
Role
|
|
Acts as the canonical record for everything the server needs to know
|
|
about a model—its provider, token limits, feature switches, aliases,
|
|
and temperature rules. Providers populate these objects so tools and
|
|
higher-level services can rely on a consistent schema.
|
|
|
|
Typical usage
|
|
* Provider subclasses declare `MODEL_CAPABILITIES` maps containing these
|
|
objects (for example ``OpenAIModelProvider``)
|
|
* Helper utilities (e.g. restriction validation, alias expansion) read
|
|
these objects to build model lists for tooling and policy enforcement
|
|
* Tool selection logic inspects attributes such as
|
|
``supports_extended_thinking`` or ``context_window`` to choose an
|
|
appropriate model for a task.
|
|
"""
|
|
|
|
provider: ProviderType
|
|
model_name: str
|
|
friendly_name: str
|
|
description: str = ""
|
|
aliases: list[str] = field(default_factory=list)
|
|
|
|
# Capacity limits / resource budgets
|
|
context_window: int = 0
|
|
max_output_tokens: int = 0
|
|
max_thinking_tokens: int = 0
|
|
|
|
# Capability flags
|
|
supports_extended_thinking: bool = False
|
|
supports_system_prompts: bool = True
|
|
supports_streaming: bool = True
|
|
supports_function_calling: bool = False
|
|
supports_images: bool = False
|
|
supports_json_mode: bool = False
|
|
supports_temperature: bool = True
|
|
|
|
# Additional attributes
|
|
max_image_size_mb: float = 0.0
|
|
is_custom: bool = False
|
|
temperature_constraint: TemperatureConstraint = field(
|
|
default_factory=lambda: RangeTemperatureConstraint(0.0, 2.0, 0.3)
|
|
)
|
|
|
|
def get_effective_temperature(self, requested_temperature: float) -> Optional[float]:
|
|
"""Return the temperature that should be sent to the provider.
|
|
|
|
Models that do not support temperature return ``None`` so that callers
|
|
can omit the parameter entirely. For supported models, the configured
|
|
constraint clamps the requested value into a provider-safe range.
|
|
"""
|
|
|
|
if not self.supports_temperature:
|
|
return None
|
|
|
|
return self.temperature_constraint.get_corrected_value(requested_temperature)
|
|
|
|
@staticmethod
|
|
def collect_aliases(model_configs: dict[str, "ModelCapabilities"]) -> dict[str, list[str]]:
|
|
"""Build a mapping of model name to aliases from capability configs."""
|
|
|
|
return {
|
|
base_model: capabilities.aliases
|
|
for base_model, capabilities in model_configs.items()
|
|
if capabilities.aliases
|
|
}
|
|
|
|
@staticmethod
|
|
def collect_model_names(
|
|
model_configs: dict[str, "ModelCapabilities"],
|
|
*,
|
|
include_aliases: bool = True,
|
|
lowercase: bool = False,
|
|
unique: bool = False,
|
|
) -> list[str]:
|
|
"""Build an ordered list of model names and aliases.
|
|
|
|
Args:
|
|
model_configs: Mapping of canonical model names to capabilities.
|
|
include_aliases: When True, include aliases for each model.
|
|
lowercase: When True, normalize names to lowercase.
|
|
unique: When True, ensure each returned name appears once (after formatting).
|
|
|
|
Returns:
|
|
Ordered list of model names (and optionally aliases) formatted per options.
|
|
"""
|
|
|
|
formatted_names: list[str] = []
|
|
seen: set[str] | None = set() if unique else None
|
|
|
|
def append_name(name: str) -> None:
|
|
formatted = name.lower() if lowercase else name
|
|
|
|
if seen is not None:
|
|
if formatted in seen:
|
|
return
|
|
seen.add(formatted)
|
|
|
|
formatted_names.append(formatted)
|
|
|
|
for base_model, capabilities in model_configs.items():
|
|
append_name(base_model)
|
|
|
|
if include_aliases and capabilities.aliases:
|
|
for alias in capabilities.aliases:
|
|
append_name(alias)
|
|
|
|
return formatted_names
|