Files
my-pal-mcp-server/tools/base.py
Fahad 5cd4908e32 fix: increase output token limit to prevent response truncation
- Add MAX_OUTPUT_TOKENS constant set to 32,768 (Gemini 2.5 Pro's limit)
- Update all tools and chat handler to use MAX_OUTPUT_TOKENS
- Add comprehensive tests for output token configuration
- Update README with configuration details and system prompt docs

This fixes the issue where Gemini responses were being cut off at 8192 tokens,
causing Claude to repeatedly ask for the same analysis.

Fixes #1

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-09 05:22:22 +04:00

132 lines
4.1 KiB
Python

"""
Base class for all Gemini MCP tools
"""
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
import google.generativeai as genai
from mcp.types import TextContent
from pydantic import BaseModel, Field
from config import MAX_OUTPUT_TOKENS
class ToolRequest(BaseModel):
"""Base request model for all tools"""
model: Optional[str] = Field(
None, description="Model to use (defaults to Gemini 2.5 Pro)"
)
max_tokens: Optional[int] = Field(
MAX_OUTPUT_TOKENS, description="Maximum number of tokens in response"
)
temperature: Optional[float] = Field(
None, description="Temperature for response (tool-specific defaults)"
)
class BaseTool(ABC):
"""Base class for all Gemini tools"""
def __init__(self):
self.name = self.get_name()
self.description = self.get_description()
self.default_temperature = self.get_default_temperature()
@abstractmethod
def get_name(self) -> str:
"""Return the tool name"""
pass
@abstractmethod
def get_description(self) -> str:
"""Return the verbose tool description for Claude"""
pass
@abstractmethod
def get_input_schema(self) -> Dict[str, Any]:
"""Return the JSON schema for tool inputs"""
pass
@abstractmethod
def get_system_prompt(self) -> str:
"""Return the system prompt for this tool"""
pass
def get_default_temperature(self) -> float:
"""Return default temperature for this tool"""
return 0.5
@abstractmethod
def get_request_model(self):
"""Return the Pydantic model for request validation"""
pass
async def execute(self, arguments: Dict[str, Any]) -> List[TextContent]:
"""Execute the tool with given arguments"""
try:
# Validate request
request_model = self.get_request_model()
request = request_model(**arguments)
# Prepare the prompt
prompt = await self.prepare_prompt(request)
# Get model configuration
from config import DEFAULT_MODEL
model_name = getattr(request, "model", None) or DEFAULT_MODEL
temperature = getattr(request, "temperature", None)
if temperature is None:
temperature = self.get_default_temperature()
max_tokens = getattr(request, "max_tokens", MAX_OUTPUT_TOKENS)
# Create and configure model
model = self.create_model(model_name, temperature, max_tokens)
# Generate response
response = model.generate_content(prompt)
# Handle response
if response.candidates and response.candidates[0].content.parts:
text = response.candidates[0].content.parts[0].text
else:
finish_reason = (
response.candidates[0].finish_reason
if response.candidates
else "Unknown"
)
text = f"Response blocked or incomplete. Finish reason: {finish_reason}"
# Format response
formatted_response = self.format_response(text, request)
return [TextContent(type="text", text=formatted_response)]
except Exception as e:
error_msg = f"Error in {self.name}: {str(e)}"
return [TextContent(type="text", text=error_msg)]
@abstractmethod
async def prepare_prompt(self, request) -> str:
"""Prepare the full prompt for Gemini"""
pass
def format_response(self, response: str, request) -> str:
"""Format the response for display (can be overridden)"""
return response
def create_model(
self, model_name: str, temperature: float, max_tokens: int
) -> genai.GenerativeModel:
"""Create a configured Gemini model"""
return genai.GenerativeModel(
model_name=model_name,
generation_config={
"temperature": temperature,
"max_output_tokens": max_tokens,
"candidate_count": 1,
},
)