"""Base interfaces and common behaviour for model providers.""" import base64 import binascii import logging import os from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Optional if TYPE_CHECKING: from tools.models import ToolModelCategory from utils.file_types import IMAGES, get_image_mime_type from .shared import ModelCapabilities, ModelResponse, ProviderType logger = logging.getLogger(__name__) class ModelProvider(ABC): """Defines the contract implemented by every model provider backend. Subclasses adapt third-party SDKs into the MCP server by exposing capability metadata, request execution, and token counting through a consistent interface. Shared helper methods (temperature validation, alias resolution, image handling, etc.) live here so individual providers only need to focus on provider-specific details. """ # All concrete providers must define their supported models MODEL_CAPABILITIES: dict[str, Any] = {} # Default maximum image size in MB DEFAULT_MAX_IMAGE_SIZE_MB = 20.0 def __init__(self, api_key: str, **kwargs): """Initialize the provider with API key and optional configuration.""" self.api_key = api_key self.config = kwargs @abstractmethod def get_capabilities(self, model_name: str) -> ModelCapabilities: """Get capabilities for a specific model.""" pass @abstractmethod def generate_content( self, prompt: str, model_name: str, system_prompt: Optional[str] = None, temperature: float = 0.3, max_output_tokens: Optional[int] = None, **kwargs, ) -> ModelResponse: """Generate content using the model. Args: prompt: User prompt to send to the model model_name: Name of the model to use system_prompt: Optional system prompt for model behavior temperature: Sampling temperature (0-2) max_output_tokens: Maximum tokens to generate **kwargs: Provider-specific parameters Returns: ModelResponse with generated content and metadata """ pass @abstractmethod def count_tokens(self, text: str, model_name: str) -> int: """Count tokens for the given text using the specified model's tokenizer.""" pass @abstractmethod def get_provider_type(self) -> ProviderType: """Get the provider type.""" pass @abstractmethod def validate_model_name(self, model_name: str) -> bool: """Validate if the model name is supported by this provider.""" pass def validate_parameters(self, model_name: str, temperature: float, **kwargs) -> None: """Validate model parameters against capabilities. Raises: ValueError: If parameters are invalid """ capabilities = self.get_capabilities(model_name) # Validate temperature using constraint if not capabilities.temperature_constraint.validate(temperature): constraint_desc = capabilities.temperature_constraint.get_description() raise ValueError(f"Temperature {temperature} is invalid for model {model_name}. {constraint_desc}") @abstractmethod def supports_thinking_mode(self, model_name: str) -> bool: """Check if the model supports extended thinking mode.""" pass def get_model_configurations(self) -> dict[str, ModelCapabilities]: """Get model configurations for this provider. This is a hook method that subclasses can override to provide their model configurations from different sources. Returns: Dictionary mapping model names to their ModelCapabilities objects """ model_map = getattr(self, "MODEL_CAPABILITIES", None) if isinstance(model_map, dict) and model_map: return {k: v for k, v in model_map.items() if isinstance(v, ModelCapabilities)} return {} def _resolve_model_name(self, model_name: str) -> str: """Resolve model shorthand to full name. This implementation uses the hook methods to support different model configuration sources. Args: model_name: Model name that may be an alias Returns: Resolved model name """ # Get model configurations from the hook method model_configs = self.get_model_configurations() # First check if it's already a base model name (case-sensitive exact match) if model_name in model_configs: return model_name # Check case-insensitively for both base models and aliases model_name_lower = model_name.lower() # Check base model names case-insensitively for base_model in model_configs: if base_model.lower() == model_name_lower: return base_model # Check aliases from the model configurations alias_map = ModelCapabilities.collect_aliases(model_configs) for base_model, aliases in alias_map.items(): if any(alias.lower() == model_name_lower for alias in aliases): return base_model # If not found, return as-is return model_name def list_models(self, respect_restrictions: bool = True) -> list[str]: """Return a list of model names supported by this provider. This implementation uses the get_model_configurations() hook to support different model configuration sources. Args: respect_restrictions: Whether to apply provider-specific restriction logic. Returns: List of model names available from this provider """ from utils.model_restrictions import get_restriction_service restriction_service = get_restriction_service() if respect_restrictions else None models = [] # Get model configurations from the hook method model_configs = self.get_model_configurations() for model_name in model_configs: # Check restrictions if enabled if restriction_service and not restriction_service.is_allowed(self.get_provider_type(), model_name): continue # Add the base model models.append(model_name) # Add aliases derived from the model configurations alias_map = ModelCapabilities.collect_aliases(model_configs) for model_name, aliases in alias_map.items(): # Only add aliases for models that passed restriction check if model_name in models: models.extend(aliases) return models def list_all_known_models(self) -> list[str]: """Return all model names known by this provider, including alias targets. This is used for validation purposes to ensure restriction policies can validate against both aliases and their target model names. Returns: List of all model names and alias targets known by this provider """ all_models = set() # Get model configurations from the hook method model_configs = self.get_model_configurations() # Add all base model names for model_name in model_configs: all_models.add(model_name.lower()) # Add aliases derived from the model configurations for aliases in ModelCapabilities.collect_aliases(model_configs).values(): for alias in aliases: all_models.add(alias.lower()) return list(all_models) def validate_image(self, image_path: str, max_size_mb: float = None) -> tuple[bytes, str]: """Provider-independent image validation. Args: image_path: Path to image file or data URL max_size_mb: Maximum allowed image size in MB (defaults to DEFAULT_MAX_IMAGE_SIZE_MB) Returns: Tuple of (image_bytes, mime_type) Raises: ValueError: If image is invalid Examples: # Validate a file path image_bytes, mime_type = provider.validate_image("/path/to/image.png") # Validate a data URL image_bytes, mime_type = provider.validate_image("data:image/png;base64,...") # Validate with custom size limit image_bytes, mime_type = provider.validate_image("/path/to/image.jpg", max_size_mb=10.0) """ # Use default if not specified if max_size_mb is None: max_size_mb = self.DEFAULT_MAX_IMAGE_SIZE_MB if image_path.startswith("data:"): # Parse data URL: ... try: header, data = image_path.split(",", 1) mime_type = header.split(";")[0].split(":")[1] except (ValueError, IndexError) as e: raise ValueError(f"Invalid data URL format: {e}") # Validate MIME type using IMAGES constant valid_mime_types = [get_image_mime_type(ext) for ext in IMAGES] if mime_type not in valid_mime_types: raise ValueError(f"Unsupported image type: {mime_type}. Supported types: {', '.join(valid_mime_types)}") # Decode base64 data try: image_bytes = base64.b64decode(data) except binascii.Error as e: raise ValueError(f"Invalid base64 data: {e}") else: # Handle file path # Read file first to check if it exists try: with open(image_path, "rb") as f: image_bytes = f.read() except FileNotFoundError: raise ValueError(f"Image file not found: {image_path}") except Exception as e: raise ValueError(f"Failed to read image file: {e}") # Validate extension ext = os.path.splitext(image_path)[1].lower() if ext not in IMAGES: raise ValueError(f"Unsupported image format: {ext}. Supported formats: {', '.join(sorted(IMAGES))}") # Get MIME type mime_type = get_image_mime_type(ext) # Validate size size_mb = len(image_bytes) / (1024 * 1024) if size_mb > max_size_mb: raise ValueError(f"Image too large: {size_mb:.1f}MB (max: {max_size_mb}MB)") return image_bytes, mime_type def close(self): """Clean up any resources held by the provider. Default implementation does nothing. Subclasses should override if they hold resources that need cleanup. """ # Base implementation: no resources to clean up return def get_preferred_model(self, category: "ToolModelCategory", allowed_models: list[str]) -> Optional[str]: """Get the preferred model from this provider for a given category. Args: category: The tool category requiring a model allowed_models: Pre-filtered list of model names that are allowed by restrictions Returns: Model name if this provider has a preference, None otherwise """ # Default implementation - providers can override with specific logic return None def get_model_registry(self) -> Optional[dict[str, Any]]: """Get the model registry for providers that maintain one. This is a hook method for providers like CustomProvider that maintain a dynamic model registry. Returns: Model registry dict or None if not applicable """ # Default implementation - most providers don't have a registry return None