""" Regression tests to ensure normal prompt handling still works after large prompt changes. This test module verifies that all tools continue to work correctly with normal-sized prompts after implementing the large prompt handling feature. """ import json from unittest.mock import MagicMock, patch import pytest from tools.analyze import AnalyzeTool from tools.chat import ChatTool from tools.codereview import CodeReviewTool # from tools.debug import DebugIssueTool # Commented out - debug tool refactored from tools.thinkdeep import ThinkDeepTool class TestPromptRegression: """Regression test suite for normal prompt handling.""" @pytest.fixture def mock_model_response(self): """Create a mock model response.""" from unittest.mock import Mock def _create_response(text="Test response"): # Return a Mock that acts like ModelResponse return Mock( content=text, usage={"input_tokens": 10, "output_tokens": 20, "total_tokens": 30}, model_name="gemini-2.5-flash", metadata={"finish_reason": "STOP"}, ) return _create_response @pytest.mark.asyncio async def test_chat_normal_prompt(self, mock_model_response): """Test chat tool with normal prompt.""" tool = ChatTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response( "This is a helpful response about Python." ) mock_get_provider.return_value = mock_provider result = await tool.execute({"prompt": "Explain Python decorators"}) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "success" assert "helpful response about Python" in output["content"] # Verify provider was called mock_provider.generate_content.assert_called_once() @pytest.mark.asyncio async def test_chat_with_files(self, mock_model_response): """Test chat tool with files parameter.""" tool = ChatTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response() mock_get_provider.return_value = mock_provider # Mock file reading through the centralized method with patch.object(tool, "_prepare_file_content_for_prompt") as mock_prepare_files: mock_prepare_files.return_value = ("File content here", ["/path/to/file.py"]) result = await tool.execute({"prompt": "Analyze this code", "files": ["/path/to/file.py"]}) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "success" mock_prepare_files.assert_called_once_with(["/path/to/file.py"], None, "Context files") @pytest.mark.asyncio async def test_thinkdeep_normal_analysis(self, mock_model_response): """Test thinkdeep tool with normal analysis.""" tool = ThinkDeepTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response( "Here's a deeper analysis with edge cases..." ) mock_get_provider.return_value = mock_provider result = await tool.execute( { "step": "I think we should use a cache for performance", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Building a high-traffic API - considering scalability and reliability", "problem_context": "Building a high-traffic API", "focus_areas": ["scalability", "reliability"], } ) assert len(result) == 1 output = json.loads(result[0].text) # ThinkDeep workflow tool returns calling_expert_analysis status when complete assert output["status"] == "calling_expert_analysis" # Check that expert analysis was performed and contains expected content if "expert_analysis" in output: expert_analysis = output["expert_analysis"] analysis_content = str(expert_analysis) assert ( "Critical Evaluation Required" in analysis_content or "deeper analysis" in analysis_content or "cache" in analysis_content ) @pytest.mark.asyncio async def test_codereview_normal_review(self, mock_model_response): """Test codereview tool with workflow inputs.""" tool = CodeReviewTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response( "Found 3 issues: 1) Missing error handling..." ) mock_get_provider.return_value = mock_provider # Mock file reading with patch("tools.base.read_files") as mock_read_files: mock_read_files.return_value = "def main(): pass" result = await tool.execute( { "step": "Initial code review investigation - examining security vulnerabilities", "step_number": 1, "total_steps": 2, "next_step_required": True, "findings": "Found security issues in code", "relevant_files": ["/path/to/code.py"], "review_type": "security", "focus_on": "Look for SQL injection vulnerabilities", } ) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "pause_for_code_review" # NOTE: Precommit test has been removed because the precommit tool has been # refactored to use a workflow-based pattern instead of accepting simple prompt/path fields. # The new precommit tool requires workflow fields like: step, step_number, total_steps, # next_step_required, findings, etc. See simulator_tests/test_precommitworkflow_validation.py # for comprehensive workflow testing. # NOTE: Debug tool test has been commented out because the debug tool has been # refactored to use a self-investigation pattern instead of accepting prompt/error_context fields. # The new debug tool requires fields like: step, step_number, total_steps, next_step_required, findings # @pytest.mark.asyncio # async def test_debug_normal_error(self, mock_model_response): # """Test debug tool with normal error description.""" # tool = DebugIssueTool() # # with patch.object(tool, "get_model_provider") as mock_get_provider: # mock_provider = MagicMock() # mock_provider.get_provider_type.return_value = MagicMock(value="google") # mock_provider.supports_thinking_mode.return_value = False # mock_provider.generate_content.return_value = mock_model_response( # "Root cause: The variable is undefined. Fix: Initialize it..." # ) # mock_get_provider.return_value = mock_provider # # result = await tool.execute( # { # "prompt": "TypeError: Cannot read property 'name' of undefined", # "error_context": "at line 42 in user.js\n console.log(user.name)", # "runtime_info": "Node.js v16.14.0", # } # ) # # assert len(result) == 1 # output = json.loads(result[0].text) # assert output["status"] == "success" # assert "Next Steps:" in output["content"] # assert "Root cause" in output["content"] @pytest.mark.asyncio async def test_analyze_normal_question(self, mock_model_response): """Test analyze tool with normal question.""" tool = AnalyzeTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response( "The code follows MVC pattern with clear separation..." ) mock_get_provider.return_value = mock_provider # Mock file reading with patch("tools.base.read_files") as mock_read_files: mock_read_files.return_value = "class UserController: ..." result = await tool.execute( { "step": "What design patterns are used in this codebase?", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial architectural analysis", "relevant_files": ["/path/to/project"], "analysis_type": "architecture", } ) assert len(result) == 1 output = json.loads(result[0].text) # Workflow analyze tool returns "calling_expert_analysis" for step 1 assert output["status"] == "calling_expert_analysis" assert "step_number" in output @pytest.mark.asyncio async def test_empty_optional_fields(self, mock_model_response): """Test tools work with empty optional fields.""" tool = ChatTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response() mock_get_provider.return_value = mock_provider # Test with no files parameter result = await tool.execute({"prompt": "Hello"}) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "success" @pytest.mark.asyncio async def test_thinking_modes_work(self, mock_model_response): """Test that thinking modes are properly passed through.""" tool = ChatTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response() mock_get_provider.return_value = mock_provider result = await tool.execute({"prompt": "Test", "thinking_mode": "high", "temperature": 0.8}) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "success" # Verify generate_content was called with correct parameters mock_provider.generate_content.assert_called_once() call_kwargs = mock_provider.generate_content.call_args[1] assert call_kwargs.get("temperature") == 0.8 # thinking_mode would be passed if the provider supports it # In this test, we set supports_thinking_mode to False, so it won't be passed @pytest.mark.asyncio async def test_special_characters_in_prompts(self, mock_model_response): """Test prompts with special characters work correctly.""" tool = ChatTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response() mock_get_provider.return_value = mock_provider special_prompt = 'Test with "quotes" and\nnewlines\tand tabs' result = await tool.execute({"prompt": special_prompt}) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "success" @pytest.mark.asyncio async def test_mixed_file_paths(self, mock_model_response): """Test handling of various file path formats.""" tool = AnalyzeTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response() mock_get_provider.return_value = mock_provider with patch("utils.file_utils.read_files") as mock_read_files: mock_read_files.return_value = "Content" result = await tool.execute( { "step": "Analyze these files", "step_number": 1, "total_steps": 1, "next_step_required": False, "findings": "Initial file analysis", "relevant_files": [ "/absolute/path/file.py", "/Users/name/project/src/", "/home/user/code.js", ], } ) assert len(result) == 1 output = json.loads(result[0].text) # Analyze workflow tool returns calling_expert_analysis status when complete assert output["status"] == "calling_expert_analysis" mock_read_files.assert_called_once() @pytest.mark.asyncio async def test_unicode_content(self, mock_model_response): """Test handling of unicode content in prompts.""" tool = ChatTool() with patch.object(tool, "get_model_provider") as mock_get_provider: mock_provider = MagicMock() mock_provider.get_provider_type.return_value = MagicMock(value="google") mock_provider.supports_thinking_mode.return_value = False mock_provider.generate_content.return_value = mock_model_response() mock_get_provider.return_value = mock_provider unicode_prompt = "Explain this: 你好世界 مرحبا بالعالم" result = await tool.execute({"prompt": unicode_prompt}) assert len(result) == 1 output = json.loads(result[0].text) assert output["status"] == "success" if __name__ == "__main__": pytest.main([__file__, "-v"])