"""OpenAI model provider implementation.""" import logging from typing import Optional from .base import ( ModelCapabilities, ModelResponse, ProviderType, create_temperature_constraint, ) from .openai_compatible import OpenAICompatibleProvider logger = logging.getLogger(__name__) class OpenAIModelProvider(OpenAICompatibleProvider): """Official OpenAI API provider (api.openai.com).""" # Model configurations using ModelCapabilities objects SUPPORTED_MODELS = { "o3": ModelCapabilities( provider=ProviderType.OPENAI, model_name="o3", friendly_name="OpenAI (O3)", context_window=200_000, # 200K tokens max_output_tokens=65536, # 64K max output tokens supports_extended_thinking=False, supports_system_prompts=True, supports_streaming=True, supports_function_calling=True, supports_json_mode=True, supports_images=True, # O3 models support vision max_image_size_mb=20.0, # 20MB per OpenAI docs supports_temperature=False, # O3 models don't accept temperature parameter temperature_constraint=create_temperature_constraint("fixed"), description="Strong reasoning (200K context) - Logical problems, code generation, systematic analysis", aliases=[], ), "o3-mini": ModelCapabilities( provider=ProviderType.OPENAI, model_name="o3-mini", friendly_name="OpenAI (O3-mini)", context_window=200_000, # 200K tokens max_output_tokens=65536, # 64K max output tokens supports_extended_thinking=False, supports_system_prompts=True, supports_streaming=True, supports_function_calling=True, supports_json_mode=True, supports_images=True, # O3 models support vision max_image_size_mb=20.0, # 20MB per OpenAI docs supports_temperature=False, # O3 models don't accept temperature parameter temperature_constraint=create_temperature_constraint("fixed"), description="Fast O3 variant (200K context) - Balanced performance/speed, moderate complexity", aliases=["o3mini", "o3-mini"], ), "o3-pro-2025-06-10": ModelCapabilities( provider=ProviderType.OPENAI, model_name="o3-pro-2025-06-10", friendly_name="OpenAI (O3-Pro)", context_window=200_000, # 200K tokens max_output_tokens=65536, # 64K max output tokens supports_extended_thinking=False, supports_system_prompts=True, supports_streaming=True, supports_function_calling=True, supports_json_mode=True, supports_images=True, # O3 models support vision max_image_size_mb=20.0, # 20MB per OpenAI docs supports_temperature=False, # O3 models don't accept temperature parameter temperature_constraint=create_temperature_constraint("fixed"), description="Professional-grade reasoning (200K context) - EXTREMELY EXPENSIVE: Only for the most complex problems requiring universe-scale complexity analysis OR when the user explicitly asks for this model. Use sparingly for critical architectural decisions or exceptionally complex debugging that other models cannot handle.", aliases=["o3-pro"], ), "o4-mini": ModelCapabilities( provider=ProviderType.OPENAI, model_name="o4-mini", friendly_name="OpenAI (O4-mini)", context_window=200_000, # 200K tokens max_output_tokens=65536, # 64K max output tokens supports_extended_thinking=False, supports_system_prompts=True, supports_streaming=True, supports_function_calling=True, supports_json_mode=True, supports_images=True, # O4 models support vision max_image_size_mb=20.0, # 20MB per OpenAI docs supports_temperature=False, # O4 models don't accept temperature parameter temperature_constraint=create_temperature_constraint("fixed"), description="Latest reasoning model (200K context) - Optimized for shorter contexts, rapid reasoning", aliases=["mini", "o4mini", "o4-mini"], ), "gpt-4.1-2025-04-14": ModelCapabilities( provider=ProviderType.OPENAI, model_name="gpt-4.1-2025-04-14", friendly_name="OpenAI (GPT 4.1)", context_window=1_000_000, # 1M tokens max_output_tokens=32_768, supports_extended_thinking=False, supports_system_prompts=True, supports_streaming=True, supports_function_calling=True, supports_json_mode=True, supports_images=True, # GPT-4.1 supports vision max_image_size_mb=20.0, # 20MB per OpenAI docs supports_temperature=True, # Regular models accept temperature parameter temperature_constraint=create_temperature_constraint("range"), description="GPT-4.1 (1M context) - Advanced reasoning model with large context window", aliases=["gpt4.1"], ), } def __init__(self, api_key: str, **kwargs): """Initialize OpenAI provider with API key.""" # Set default OpenAI base URL, allow override for regions/custom endpoints kwargs.setdefault("base_url", "https://api.openai.com/v1") super().__init__(api_key, **kwargs) def get_capabilities(self, model_name: str) -> ModelCapabilities: """Get capabilities for a specific OpenAI model.""" # Resolve shorthand resolved_name = self._resolve_model_name(model_name) if resolved_name not in self.SUPPORTED_MODELS: raise ValueError(f"Unsupported OpenAI model: {model_name}") # Check if model is allowed by restrictions from utils.model_restrictions import get_restriction_service restriction_service = get_restriction_service() if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name): raise ValueError(f"OpenAI model '{model_name}' is not allowed by restriction policy.") # Return the ModelCapabilities object directly from SUPPORTED_MODELS return self.SUPPORTED_MODELS[resolved_name] def get_provider_type(self) -> ProviderType: """Get the provider type.""" return ProviderType.OPENAI def validate_model_name(self, model_name: str) -> bool: """Validate if the model name is supported and allowed.""" resolved_name = self._resolve_model_name(model_name) # First check if model is supported if resolved_name not in self.SUPPORTED_MODELS: return False # Then check if model is allowed by restrictions from utils.model_restrictions import get_restriction_service restriction_service = get_restriction_service() if not restriction_service.is_allowed(ProviderType.OPENAI, resolved_name, model_name): logger.debug(f"OpenAI model '{model_name}' -> '{resolved_name}' blocked by restrictions") return False return True def generate_content( self, prompt: str, model_name: str, system_prompt: Optional[str] = None, temperature: float = 0.7, max_output_tokens: Optional[int] = None, **kwargs, ) -> ModelResponse: """Generate content using OpenAI API with proper model name resolution.""" # Resolve model alias before making API call resolved_model_name = self._resolve_model_name(model_name) # Call parent implementation with resolved model name return super().generate_content( prompt=prompt, model_name=resolved_model_name, system_prompt=system_prompt, temperature=temperature, max_output_tokens=max_output_tokens, **kwargs, ) def supports_thinking_mode(self, model_name: str) -> bool: """Check if the model supports extended thinking mode.""" # Currently no OpenAI models support extended thinking # This may change with future O3 models return False