""" Analyze tool - General-purpose code and file analysis """ from typing import Any, Optional from mcp.types import TextContent from pydantic import Field from config import TEMPERATURE_ANALYTICAL from prompts import ANALYZE_PROMPT from utils import read_files from .base import BaseTool, ToolRequest from .models import ToolOutput class AnalyzeRequest(ToolRequest): """Request model for analyze tool""" files: list[str] = Field(..., description="Files or directories to analyze (must be absolute paths)") question: str = Field(..., description="What to analyze or look for") analysis_type: Optional[str] = Field( None, description="Type of analysis: architecture|performance|security|quality|general", ) output_format: Optional[str] = Field("detailed", description="Output format: summary|detailed|actionable") class AnalyzeTool(BaseTool): """General-purpose file and code analysis tool""" def get_name(self) -> str: return "analyze" def get_description(self) -> str: return ( "ANALYZE FILES & CODE - General-purpose analysis for understanding code. " "Supports both individual files and entire directories. " "Use this for examining files, understanding architecture, or investigating specific aspects. " "Triggers: 'analyze these files', 'examine this code', 'understand this'. " "Perfect for: codebase exploration, dependency analysis, pattern detection. " "Always uses file paths for clean terminal output." ) def get_input_schema(self) -> dict[str, Any]: return { "type": "object", "properties": { "files": { "type": "array", "items": {"type": "string"}, "description": "Files or directories to analyze (must be absolute paths)", }, "question": { "type": "string", "description": "What to analyze or look for", }, "analysis_type": { "type": "string", "enum": [ "architecture", "performance", "security", "quality", "general", ], "description": "Type of analysis to perform", }, "output_format": { "type": "string", "enum": ["summary", "detailed", "actionable"], "default": "detailed", "description": "How to format the output", }, "temperature": { "type": "number", "description": "Temperature (0-1, default 0.2)", "minimum": 0, "maximum": 1, }, "thinking_mode": { "type": "string", "enum": ["minimal", "low", "medium", "high", "max"], "description": "Thinking depth: minimal (128), low (2048), medium (8192), high (16384), max (32768)", }, "use_websearch": { "type": "boolean", "description": "Enable web search for documentation, best practices, and current information. Particularly useful for: brainstorming sessions, architectural design discussions, exploring industry best practices, working with specific frameworks/technologies, researching solutions to complex problems, or when current documentation and community insights would enhance the analysis.", "default": False, }, }, "required": ["files", "question"], } def get_system_prompt(self) -> str: return ANALYZE_PROMPT def get_default_temperature(self) -> float: return TEMPERATURE_ANALYTICAL def get_request_model(self): return AnalyzeRequest async def execute(self, arguments: dict[str, Any]) -> list[TextContent]: """Override execute to check question size before processing""" # First validate request request_model = self.get_request_model() request = request_model(**arguments) # Check question size size_check = self.check_prompt_size(request.question) if size_check: return [TextContent(type="text", text=ToolOutput(**size_check).model_dump_json())] # Continue with normal execution return await super().execute(arguments) async def prepare_prompt(self, request: AnalyzeRequest) -> str: """Prepare the analysis prompt""" # Check for prompt.txt in files prompt_content, updated_files = self.handle_prompt_file(request.files) # If prompt.txt was found, use it as the question if prompt_content: request.question = prompt_content # Update request files list if updated_files is not None: request.files = updated_files # Read all files file_content = read_files(request.files) # Check token limits self._validate_token_limit(file_content, "Files") # Build analysis instructions analysis_focus = [] if request.analysis_type: type_focus = { "architecture": "Focus on architectural patterns, structure, and design decisions", "performance": "Focus on performance characteristics and optimization opportunities", "security": "Focus on security implications and potential vulnerabilities", "quality": "Focus on code quality, maintainability, and best practices", "general": "Provide a comprehensive general analysis", } analysis_focus.append(type_focus.get(request.analysis_type, "")) if request.output_format == "summary": analysis_focus.append("Provide a concise summary of key findings") elif request.output_format == "actionable": analysis_focus.append("Focus on actionable insights and specific recommendations") focus_instruction = "\n".join(analysis_focus) if analysis_focus else "" # Add web search instruction if enabled websearch_instruction = self.get_websearch_instruction( request.use_websearch, """Specifically search for: - Documentation for technologies or frameworks found in the code - Best practices and design patterns relevant to the analysis - API references and usage examples - Known issues or solutions for patterns you identify""", ) # Combine everything full_prompt = f"""{self.get_system_prompt()} {focus_instruction}{websearch_instruction} === USER QUESTION === {request.question} === END QUESTION === === FILES TO ANALYZE === {file_content} === END FILES === Please analyze these files to answer the user's question.""" return full_prompt def format_response(self, response: str, request: AnalyzeRequest) -> str: """Format the analysis response""" header = f"Analysis: {request.question[:50]}..." if request.analysis_type: header = f"{request.analysis_type.upper()} Analysis" summary_text = f"Analyzed {len(request.files)} file(s)" return f"{header}\n{summary_text}\n{'=' * 50}\n\n{response}\n\n---\n\n**Next Steps:** Consider if this analysis reveals areas needing deeper investigation, additional context, or specific implementation details."