"""Gemini model provider implementation.""" import base64 import logging import os import time from typing import Optional from google import genai from google.genai import types from .base import ModelCapabilities, ModelProvider, ModelResponse, ProviderType, RangeTemperatureConstraint logger = logging.getLogger(__name__) class GeminiModelProvider(ModelProvider): """Google Gemini model provider implementation.""" # Model configurations SUPPORTED_MODELS = { "gemini-2.5-flash-preview-05-20": { "context_window": 1_048_576, # 1M tokens "supports_extended_thinking": True, "max_thinking_tokens": 24576, # Flash 2.5 thinking budget limit "supports_images": True, # Vision capability "max_image_size_mb": 20.0, # Conservative 20MB limit for reliability }, "gemini-2.5-pro-preview-06-05": { "context_window": 1_048_576, # 1M tokens "supports_extended_thinking": True, "max_thinking_tokens": 32768, # Pro 2.5 thinking budget limit "supports_images": True, # Vision capability "max_image_size_mb": 32.0, # Higher limit for Pro model }, # Shorthands "flash": "gemini-2.5-flash-preview-05-20", "pro": "gemini-2.5-pro-preview-06-05", } # Thinking mode configurations - percentages of model's max_thinking_tokens # These percentages work across all models that support thinking THINKING_BUDGETS = { "minimal": 0.005, # 0.5% of max - minimal thinking for fast responses "low": 0.08, # 8% of max - light reasoning tasks "medium": 0.33, # 33% of max - balanced reasoning (default) "high": 0.67, # 67% of max - complex analysis "max": 1.0, # 100% of max - full thinking budget } def __init__(self, api_key: str, **kwargs): """Initialize Gemini provider with API key.""" super().__init__(api_key, **kwargs) self._client = None self._token_counters = {} # Cache for token counting @property def client(self): """Lazy initialization of Gemini client.""" if self._client is None: self._client = genai.Client(api_key=self.api_key) return self._client def get_capabilities(self, model_name: str) -> ModelCapabilities: """Get capabilities for a specific Gemini model.""" # Resolve shorthand resolved_name = self._resolve_model_name(model_name) if resolved_name not in self.SUPPORTED_MODELS: raise ValueError(f"Unsupported Gemini model: {model_name}") # Check if model is allowed by restrictions from utils.model_restrictions import get_restriction_service restriction_service = get_restriction_service() if not restriction_service.is_allowed(ProviderType.GOOGLE, model_name, resolved_name): raise ValueError(f"Gemini model '{resolved_name}' is not allowed by restriction policy.") config = self.SUPPORTED_MODELS[resolved_name] # Gemini models support 0.0-2.0 temperature range temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7) return ModelCapabilities( provider=ProviderType.GOOGLE, model_name=resolved_name, friendly_name="Gemini", context_window=config["context_window"], supports_extended_thinking=config["supports_extended_thinking"], supports_system_prompts=True, supports_streaming=True, supports_function_calling=True, supports_images=config.get("supports_images", False), max_image_size_mb=config.get("max_image_size_mb", 0.0), temperature_constraint=temp_constraint, ) def generate_content( self, prompt: str, model_name: str, system_prompt: Optional[str] = None, temperature: float = 0.7, max_output_tokens: Optional[int] = None, thinking_mode: str = "medium", images: Optional[list[str]] = None, **kwargs, ) -> ModelResponse: """Generate content using Gemini model.""" # Validate parameters resolved_name = self._resolve_model_name(model_name) self.validate_parameters(model_name, temperature) # Prepare content parts (text and potentially images) parts = [] # Add system and user prompts as text if system_prompt: full_prompt = f"{system_prompt}\n\n{prompt}" else: full_prompt = prompt parts.append({"text": full_prompt}) # Add images if provided and model supports vision if images and self._supports_vision(resolved_name): for image_path in images: try: image_part = self._process_image(image_path) if image_part: parts.append(image_part) except Exception as e: logger.warning(f"Failed to process image {image_path}: {e}") # Continue with other images and text continue elif images and not self._supports_vision(resolved_name): logger.warning(f"Model {resolved_name} does not support images, ignoring {len(images)} image(s)") # Create contents structure contents = [{"parts": parts}] # Prepare generation config generation_config = types.GenerateContentConfig( temperature=temperature, candidate_count=1, ) # Add max output tokens if specified if max_output_tokens: generation_config.max_output_tokens = max_output_tokens # Add thinking configuration for models that support it capabilities = self.get_capabilities(model_name) if capabilities.supports_extended_thinking and thinking_mode in self.THINKING_BUDGETS: # Get model's max thinking tokens and calculate actual budget model_config = self.SUPPORTED_MODELS.get(resolved_name) if model_config and "max_thinking_tokens" in model_config: max_thinking_tokens = model_config["max_thinking_tokens"] actual_thinking_budget = int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode]) generation_config.thinking_config = types.ThinkingConfig(thinking_budget=actual_thinking_budget) # Retry logic with exponential backoff max_retries = 2 # Total of 2 attempts (1 initial + 1 retry) base_delay = 1.0 # Start with 1 second delay last_exception = None for attempt in range(max_retries): try: # Generate content response = self.client.models.generate_content( model=resolved_name, contents=contents, config=generation_config, ) # Extract usage information if available usage = self._extract_usage(response) return ModelResponse( content=response.text, usage=usage, model_name=resolved_name, friendly_name="Gemini", provider=ProviderType.GOOGLE, metadata={ "thinking_mode": thinking_mode if capabilities.supports_extended_thinking else None, "finish_reason": ( getattr(response.candidates[0], "finish_reason", "STOP") if response.candidates else "STOP" ), }, ) except Exception as e: last_exception = e # Check if this is a retryable error error_str = str(e).lower() is_retryable = any( term in error_str for term in [ "timeout", "connection", "network", "temporary", "unavailable", "retry", "429", "500", "502", "503", "504", ] ) # If this is the last attempt or not retryable, give up if attempt == max_retries - 1 or not is_retryable: break # Calculate delay with exponential backoff delay = base_delay * (2**attempt) # Log retry attempt (could add logging here if needed) # For now, just sleep and retry time.sleep(delay) # If we get here, all retries failed error_msg = f"Gemini API error for model {resolved_name} after {max_retries} attempts: {str(last_exception)}" raise RuntimeError(error_msg) from last_exception def count_tokens(self, text: str, model_name: str) -> int: """Count tokens for the given text using Gemini's tokenizer.""" self._resolve_model_name(model_name) # For now, use a simple estimation # TODO: Use actual Gemini tokenizer when available in SDK # Rough estimation: ~4 characters per token for English text return len(text) // 4 def get_provider_type(self) -> ProviderType: """Get the provider type.""" return ProviderType.GOOGLE def validate_model_name(self, model_name: str) -> bool: """Validate if the model name is supported and allowed.""" resolved_name = self._resolve_model_name(model_name) # First check if model is supported if resolved_name not in self.SUPPORTED_MODELS or not isinstance(self.SUPPORTED_MODELS[resolved_name], dict): return False # Then check if model is allowed by restrictions from utils.model_restrictions import get_restriction_service restriction_service = get_restriction_service() if not restriction_service.is_allowed(ProviderType.GOOGLE, model_name, resolved_name): logger.debug(f"Gemini model '{model_name}' -> '{resolved_name}' blocked by restrictions") return False return True def supports_thinking_mode(self, model_name: str) -> bool: """Check if the model supports extended thinking mode.""" capabilities = self.get_capabilities(model_name) return capabilities.supports_extended_thinking def get_thinking_budget(self, model_name: str, thinking_mode: str) -> int: """Get actual thinking token budget for a model and thinking mode.""" resolved_name = self._resolve_model_name(model_name) model_config = self.SUPPORTED_MODELS.get(resolved_name, {}) if not model_config.get("supports_extended_thinking", False): return 0 if thinking_mode not in self.THINKING_BUDGETS: return 0 max_thinking_tokens = model_config.get("max_thinking_tokens", 0) if max_thinking_tokens == 0: return 0 return int(max_thinking_tokens * self.THINKING_BUDGETS[thinking_mode]) def _resolve_model_name(self, model_name: str) -> str: """Resolve model shorthand to full name.""" # Check if it's a shorthand shorthand_value = self.SUPPORTED_MODELS.get(model_name.lower()) if isinstance(shorthand_value, str): return shorthand_value return model_name def _extract_usage(self, response) -> dict[str, int]: """Extract token usage from Gemini response.""" usage = {} # Try to extract usage metadata from response # Note: The actual structure depends on the SDK version and response format if hasattr(response, "usage_metadata"): metadata = response.usage_metadata if hasattr(metadata, "prompt_token_count"): usage["input_tokens"] = metadata.prompt_token_count if hasattr(metadata, "candidates_token_count"): usage["output_tokens"] = metadata.candidates_token_count if "input_tokens" in usage and "output_tokens" in usage: usage["total_tokens"] = usage["input_tokens"] + usage["output_tokens"] return usage def _supports_vision(self, model_name: str) -> bool: """Check if the model supports vision (image processing).""" # Gemini 2.5 models support vision vision_models = { "gemini-2.5-flash-preview-05-20", "gemini-2.5-pro-preview-06-05", "gemini-2.0-flash", "gemini-1.5-pro", "gemini-1.5-flash", } return model_name in vision_models def _process_image(self, image_path: str) -> Optional[dict]: """Process an image for Gemini API.""" try: if image_path.startswith("... header, data = image_path.split(",", 1) mime_type = header.split(";")[0].split(":")[1] return {"inline_data": {"mime_type": mime_type, "data": data}} else: # Handle file path - translate for Docker environment from utils.file_types import get_image_mime_type from utils.file_utils import translate_path_for_environment translated_path = translate_path_for_environment(image_path) logger.debug(f"Translated image path from '{image_path}' to '{translated_path}'") if not os.path.exists(translated_path): logger.warning(f"Image file not found: {translated_path} (original: {image_path})") return None # Use translated path for all subsequent operations image_path = translated_path # Detect MIME type from file extension using centralized mappings ext = os.path.splitext(image_path)[1].lower() mime_type = get_image_mime_type(ext) # Read and encode the image with open(image_path, "rb") as f: image_data = base64.b64encode(f.read()).decode() return {"inline_data": {"mime_type": mime_type, "data": image_data}} except Exception as e: logger.error(f"Error processing image {image_path}: {e}") return None