feat: Azure OpenAI / Azure AI Foundry support. Models should be defined in conf/azure_models.json (or a custom path). See .env.example for environment variables or see readme. https://github.com/BeehiveInnovations/zen-mcp-server/issues/265
feat: OpenRouter / Custom Models / Azure can separately also use custom config paths now (see .env.example )
refactor: Model registry class made abstract, OpenRouter / Custom Provider / Azure OpenAI now subclass these
refactor: breaking change: `is_custom` property has been removed from model_capabilities.py (and thus custom_models.json) given each models are now read from separate configuration files
fix: restrictions should resolve canonical names for openrouter
fix: tools now correctly return restricted list by presenting model names in schema
fix: tests updated to ensure these manage their expected env vars properly
perf: cache model alias resolution to avoid repeated checks
fix: model definition re-introduced into the schema but intelligently and only a summary is generated per tool. Required to ensure CLI calls and uses the correct model
fix: removed `model` param from some tools where this wasn't needed
fix: fixed adherence to `*_ALLOWED_MODELS` by advertising only the allowed models to the CLI
fix: removed duplicates across providers when passing canonical names back to the CLI; the first enabled provider wins
docs: document provider base class
refactor: cleanup custom provider, it should only deal with `is_custom` model configurations
fix: make sure openrouter provider does not load `is_custom` models
fix: listmodels tool cleanup
Moved aliases as part of SUPPORTED_MODELS instead of shorthand, more in line with how custom_models are declared
Further refactoring to cleanup some code
Improved prompt for immediate action
Additional logging of tool names
Updated documentation
Context aware decomposition system prompt
New script to run code quality checks
* Support for Custom URLs and custom models, including locally hosted models such as ollama
* Support for native + openrouter + local models (i.e. dozens of models) means you can start delegating sub-tasks to particular models or work to local models such as localizations or other boring work etc.
* Several tests added
* precommit to also include untracked (new) files
* Logfile auto rollover
* Improved logging