Rebranding, refactoring, renaming, cleanup, updated docs

This commit is contained in:
Fahad
2025-06-12 10:40:43 +04:00
parent 9a55ca8898
commit fb66825bf6
55 changed files with 1048 additions and 1474 deletions

View File

@@ -1,24 +1,23 @@
"""OpenAI model provider implementation."""
import os
from typing import Dict, Optional, List, Any
import logging
from typing import Optional
from openai import OpenAI
from .base import (
ModelProvider,
ModelResponse,
ModelCapabilities,
ProviderType,
FixedTemperatureConstraint,
RangeTemperatureConstraint
ModelCapabilities,
ModelProvider,
ModelResponse,
ProviderType,
RangeTemperatureConstraint,
)
class OpenAIModelProvider(ModelProvider):
"""OpenAI model provider implementation."""
# Model configurations
SUPPORTED_MODELS = {
"o3": {
@@ -30,14 +29,14 @@ class OpenAIModelProvider(ModelProvider):
"supports_extended_thinking": False,
},
}
def __init__(self, api_key: str, **kwargs):
"""Initialize OpenAI provider with API key."""
super().__init__(api_key, **kwargs)
self._client = None
self.base_url = kwargs.get("base_url") # Support custom endpoints
self.organization = kwargs.get("organization")
@property
def client(self):
"""Lazy initialization of OpenAI client."""
@@ -47,17 +46,17 @@ class OpenAIModelProvider(ModelProvider):
client_kwargs["base_url"] = self.base_url
if self.organization:
client_kwargs["organization"] = self.organization
self._client = OpenAI(**client_kwargs)
return self._client
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific OpenAI model."""
if model_name not in self.SUPPORTED_MODELS:
raise ValueError(f"Unsupported OpenAI model: {model_name}")
config = self.SUPPORTED_MODELS[model_name]
# Define temperature constraints per model
if model_name in ["o3", "o3-mini"]:
# O3 models only support temperature=1.0
@@ -65,7 +64,7 @@ class OpenAIModelProvider(ModelProvider):
else:
# Other OpenAI models support 0.0-2.0 range
temp_constraint = RangeTemperatureConstraint(0.0, 2.0, 0.7)
return ModelCapabilities(
provider=ProviderType.OPENAI,
model_name=model_name,
@@ -77,7 +76,7 @@ class OpenAIModelProvider(ModelProvider):
supports_function_calling=True,
temperature_constraint=temp_constraint,
)
def generate_content(
self,
prompt: str,
@@ -85,42 +84,42 @@ class OpenAIModelProvider(ModelProvider):
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs
**kwargs,
) -> ModelResponse:
"""Generate content using OpenAI model."""
# Validate parameters
self.validate_parameters(model_name, temperature)
# Prepare messages
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
# Prepare completion parameters
completion_params = {
"model": model_name,
"messages": messages,
"temperature": temperature,
}
# Add max tokens if specified
if max_output_tokens:
completion_params["max_tokens"] = max_output_tokens
# Add any additional OpenAI-specific parameters
for key, value in kwargs.items():
if key in ["top_p", "frequency_penalty", "presence_penalty", "seed", "stop"]:
completion_params[key] = value
try:
# Generate completion
response = self.client.chat.completions.create(**completion_params)
# Extract content and usage
content = response.choices[0].message.content
usage = self._extract_usage(response)
return ModelResponse(
content=content,
usage=usage,
@@ -132,18 +131,18 @@ class OpenAIModelProvider(ModelProvider):
"model": response.model, # Actual model used (in case of fallbacks)
"id": response.id,
"created": response.created,
}
},
)
except Exception as e:
# Log error and re-raise with more context
error_msg = f"OpenAI API error for model {model_name}: {str(e)}"
logging.error(error_msg)
raise RuntimeError(error_msg) from e
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text.
Note: For accurate token counting, we should use tiktoken library.
This is a simplified estimation.
"""
@@ -151,28 +150,28 @@ class OpenAIModelProvider(ModelProvider):
# For now, use rough estimation
# O3 models ~4 chars per token
return len(text) // 4
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
return ProviderType.OPENAI
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported."""
return model_name in self.SUPPORTED_MODELS
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
# Currently no OpenAI models support extended thinking
# This may change with future O3 models
return False
def _extract_usage(self, response) -> Dict[str, int]:
def _extract_usage(self, response) -> dict[str, int]:
"""Extract token usage from OpenAI response."""
usage = {}
if hasattr(response, "usage") and response.usage:
usage["input_tokens"] = response.usage.prompt_tokens
usage["output_tokens"] = response.usage.completion_tokens
usage["total_tokens"] = response.usage.total_tokens
return usage
return usage