Rebranding, refactoring, renaming, cleanup, updated docs

This commit is contained in:
Fahad
2025-06-12 10:40:43 +04:00
parent 9a55ca8898
commit fb66825bf6
55 changed files with 1048 additions and 1474 deletions

View File

@@ -2,34 +2,35 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Tuple
from enum import Enum
from typing import Any, Optional
class ProviderType(Enum):
"""Supported model provider types."""
GOOGLE = "google"
OPENAI = "openai"
class TemperatureConstraint(ABC):
"""Abstract base class for temperature constraints."""
@abstractmethod
def validate(self, temperature: float) -> bool:
"""Check if temperature is valid."""
pass
@abstractmethod
def get_corrected_value(self, temperature: float) -> float:
"""Get nearest valid temperature."""
pass
@abstractmethod
def get_description(self) -> str:
"""Get human-readable description of constraint."""
pass
@abstractmethod
def get_default(self) -> float:
"""Get model's default temperature."""
@@ -38,60 +39,60 @@ class TemperatureConstraint(ABC):
class FixedTemperatureConstraint(TemperatureConstraint):
"""For models that only support one temperature value (e.g., O3)."""
def __init__(self, value: float):
self.value = value
def validate(self, temperature: float) -> bool:
return abs(temperature - self.value) < 1e-6 # Handle floating point precision
def get_corrected_value(self, temperature: float) -> float:
return self.value
def get_description(self) -> str:
return f"Only supports temperature={self.value}"
def get_default(self) -> float:
return self.value
class RangeTemperatureConstraint(TemperatureConstraint):
"""For models supporting continuous temperature ranges."""
def __init__(self, min_temp: float, max_temp: float, default: float = None):
self.min_temp = min_temp
self.max_temp = max_temp
self.default_temp = default or (min_temp + max_temp) / 2
def validate(self, temperature: float) -> bool:
return self.min_temp <= temperature <= self.max_temp
def get_corrected_value(self, temperature: float) -> float:
return max(self.min_temp, min(self.max_temp, temperature))
def get_description(self) -> str:
return f"Supports temperature range [{self.min_temp}, {self.max_temp}]"
def get_default(self) -> float:
return self.default_temp
class DiscreteTemperatureConstraint(TemperatureConstraint):
"""For models supporting only specific temperature values."""
def __init__(self, allowed_values: List[float], default: float = None):
def __init__(self, allowed_values: list[float], default: float = None):
self.allowed_values = sorted(allowed_values)
self.default_temp = default or allowed_values[len(allowed_values)//2]
self.default_temp = default or allowed_values[len(allowed_values) // 2]
def validate(self, temperature: float) -> bool:
return any(abs(temperature - val) < 1e-6 for val in self.allowed_values)
def get_corrected_value(self, temperature: float) -> float:
return min(self.allowed_values, key=lambda x: abs(x - temperature))
def get_description(self) -> str:
return f"Supports temperatures: {self.allowed_values}"
def get_default(self) -> float:
return self.default_temp
@@ -99,6 +100,7 @@ class DiscreteTemperatureConstraint(TemperatureConstraint):
@dataclass
class ModelCapabilities:
"""Capabilities and constraints for a specific model."""
provider: ProviderType
model_name: str
friendly_name: str # Human-friendly name like "Gemini" or "OpenAI"
@@ -107,15 +109,15 @@ class ModelCapabilities:
supports_system_prompts: bool = True
supports_streaming: bool = True
supports_function_calling: bool = False
# Temperature constraint object - preferred way to define temperature limits
temperature_constraint: TemperatureConstraint = field(
default_factory=lambda: RangeTemperatureConstraint(0.0, 2.0, 0.7)
)
# Backward compatibility property for existing code
@property
def temperature_range(self) -> Tuple[float, float]:
def temperature_range(self) -> tuple[float, float]:
"""Backward compatibility for existing code that uses temperature_range."""
if isinstance(self.temperature_constraint, RangeTemperatureConstraint):
return (self.temperature_constraint.min_temp, self.temperature_constraint.max_temp)
@@ -130,13 +132,14 @@ class ModelCapabilities:
@dataclass
class ModelResponse:
"""Response from a model provider."""
content: str
usage: Dict[str, int] = field(default_factory=dict) # input_tokens, output_tokens, total_tokens
usage: dict[str, int] = field(default_factory=dict) # input_tokens, output_tokens, total_tokens
model_name: str = ""
friendly_name: str = "" # Human-friendly name like "Gemini" or "OpenAI"
provider: ProviderType = ProviderType.GOOGLE
metadata: Dict[str, Any] = field(default_factory=dict) # Provider-specific metadata
metadata: dict[str, Any] = field(default_factory=dict) # Provider-specific metadata
@property
def total_tokens(self) -> int:
"""Get total tokens used."""
@@ -145,17 +148,17 @@ class ModelResponse:
class ModelProvider(ABC):
"""Abstract base class for model providers."""
def __init__(self, api_key: str, **kwargs):
"""Initialize the provider with API key and optional configuration."""
self.api_key = api_key
self.config = kwargs
@abstractmethod
def get_capabilities(self, model_name: str) -> ModelCapabilities:
"""Get capabilities for a specific model."""
pass
@abstractmethod
def generate_content(
self,
@@ -164,10 +167,10 @@ class ModelProvider(ABC):
system_prompt: Optional[str] = None,
temperature: float = 0.7,
max_output_tokens: Optional[int] = None,
**kwargs
**kwargs,
) -> ModelResponse:
"""Generate content using the model.
Args:
prompt: User prompt to send to the model
model_name: Name of the model to use
@@ -175,49 +178,43 @@ class ModelProvider(ABC):
temperature: Sampling temperature (0-2)
max_output_tokens: Maximum tokens to generate
**kwargs: Provider-specific parameters
Returns:
ModelResponse with generated content and metadata
"""
pass
@abstractmethod
def count_tokens(self, text: str, model_name: str) -> int:
"""Count tokens for the given text using the specified model's tokenizer."""
pass
@abstractmethod
def get_provider_type(self) -> ProviderType:
"""Get the provider type."""
pass
@abstractmethod
def validate_model_name(self, model_name: str) -> bool:
"""Validate if the model name is supported by this provider."""
pass
def validate_parameters(
self,
model_name: str,
temperature: float,
**kwargs
) -> None:
def validate_parameters(self, model_name: str, temperature: float, **kwargs) -> None:
"""Validate model parameters against capabilities.
Raises:
ValueError: If parameters are invalid
"""
capabilities = self.get_capabilities(model_name)
# Validate temperature
min_temp, max_temp = capabilities.temperature_range
if not min_temp <= temperature <= max_temp:
raise ValueError(
f"Temperature {temperature} out of range [{min_temp}, {max_temp}] "
f"for model {model_name}"
f"Temperature {temperature} out of range [{min_temp}, {max_temp}] " f"for model {model_name}"
)
@abstractmethod
def supports_thinking_mode(self, model_name: str) -> bool:
"""Check if the model supports extended thinking mode."""
pass
pass